Câu hỏi:

20/10/2022 1,772 Lưu

Cho nửa đường tròn đường kính AB trên đó có một điểm M. Trên đường kinh AB lấy một điểm C sao cho AC<CB . Trên nửa mặt phằng bờ AB có chứa điểm M, người ta kẻ các tia Ax, By vuông góc với AB; đường thẳng qua M vuông góc với MC cắt Ax tại P; đường thẳng qua C vuông góc với CP cắt By tại Q. Gọi D là giao điểm của CP và AM; E là giao điểm của CQ và BM

a) Chứng minh rằng các tứ giác ACMP, CDME nội tiếp được

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
a)
Cho nửa đường tròn đường kính AB trên đó có một điểm M. Trên đường kinh AB lấy một  điểm C (ảnh 1)
Tứ giác ACMP có A^=M^=900  nên nội tiếp được
Tứ giác CDME có C^=M^=900   nên nội tiếp được

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho  tam giác ABCcó trực tâm H nội tiếp (O) đường kính CM, gọi I là trung điểm của AB. Chứng minh rằng H, I, M thẳng hàng. (ảnh 1)

MBBC, AHBC (suy từ giả thiết).

MB//AH.

MA//BH (cùng vuông góc với AC).

AMBH là hình bình hành.

AB cắt MH tại trung điểm I của AB và MH  (t/c hình bình hành).

Suy ra H, I, M thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP