Câu hỏi:

11/07/2024 1,821

Cho nửa đường tròn đường kính BC = 2R. Từ điểm A trên nửa đường tròn vẽ AH vuông góc với BC Nửa đường tròn đường kính BH, CH lần lượt có tâm O1; O2 cắt AB, AC thứ tự tại D và E.
Xác định vị trí điểm A để diện tích tứ giác  DEO1O2đạt giá trị lớn nhất. Tính giá trị đó.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Vì O1D = O1B   =>ΔO1BD cân tại   => B^=BDO1^  (2)

Từ (1), (2) =>ADE^+BDO1^=B^+BAH^ = 900 =>  O1D //O2E

Vậy  là hình thang vuông tại D và E.

Ta có S =12(O1D+O2E).DE=12O1O2.DE12O1O22

(Vì O1D+O2E=O1H+O2H=O1O2    DEO1O2)

Sht12O1O22=BC28=R22

Dấu "=" xảy ra khi và chỉ khi  DE =O1O2

DEO1O2  là hình chữ nhật

A là điểm chính giữa cung BC Khi đó max SDEO1O2=R22 .

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh MN ^ AB

Xem đáp án » 24/10/2022 9,075

Câu 2:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh AB là tiếp tuyến của đường tròn đường kính CD

Xem đáp án » 24/10/2022 8,850

Câu 3:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh COD^=900  .

Xem đáp án » 24/10/2022 7,894

Câu 4:

Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.

Gọi H là trực tâm của tam giác BPQ. Chứng minh H là trung điểm của OA;

Xem đáp án » 13/07/2024 7,399

Câu 5:

Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .

Khi M di chuyển trên cung nhỏ AB Gọi E là giao điểm của HK và BN.

Xác định vị trí của điểm M để (MK.AN + ME.NB) có giá trị lớn nhất.

Xem đáp án » 13/07/2024 6,931

Câu 6:

Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và. B Nối AC cắt MN tại E.

Chứng minh AE.AC - AI.IB = AI2.

Xem đáp án » 13/07/2024 6,676

Câu 7:

Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB

Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.

Xem đáp án » 13/07/2024 6,248
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua