Câu hỏi:
13/07/2024 2,314
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và
Một đường thẳng d thay đổi luôn đi qua A cắt (O) và thứ tự tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất.
Một đường thẳng d thay đổi luôn đi qua A cắt (O) và thứ tự tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất.
Câu hỏi trong đề: Bài tập Toán 9 Chủ đề 7: Cực trị hình học có đáp án !!
Quảng cáo
Trả lời:
Ta có (góc nội tiếp chắn nửa đường tròn); suy ra CM // DN hay CMND là hình thang.
Gọi I, K thứ tự là trung điểm của MN và CD Khi đó IK là đường trung bình của hình thang CMND Suy ra IK // CM // DN (1) và CM + DN = 2.IK (2)
Từ (1) suy ra IK vuông góc MN IK KA (3) (KA là hằng số do A và K cố định).
Từ (2) và (3) suy ra: CM + DN 2KA
Dấu “ = ” xảy ra khi và chỉ khi IK = AK d vuông góc AK tại A
Vậy khi đường thẳng d vuông góc AK tại A thì (CM + DN) đạt giá trị lớn nhất bằng 2KA
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi I là trung điểm của CD ta có I là tâm đường tròn ngoại tiếp tam giác COD đường kính CD có IO là bán kính.
Theo tính chất tiếp tuyến ta có AC ^ AB; BD ^ AB => AC // BD => tứ giác ACDB là hình thang. Lại có I là trung điểm của CD; O là trung điểm của AB => IO là đường trung bình của hình thang ACDB
IO // AC, mà AC ^ AB => IO ^ AB tại O => AB là tiếp tuyến tại O của đường tròn đường kính CD
Lời giải
Theo trên AC // BD => , mà CA = CM; DB = DM nên suy ra => MN // BD mà BD ^ AB => MN ^ AB
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.