Câu hỏi:

24/10/2022 893

Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MI AB, MK AC (I AB,K AC)

Vẽ MP vuông góc BC (P thuộc BC). Chứng minh: MPK^=MBC^ .

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Tứ giác CPMK có MPC^=MKC^=900 (gt). Do đó CPMK là tứ giác nội tiếpMPK^=MCK^ (1). Vì KC là tiếp tuyến của (O) nên ta có: MCK^=MBC^  (cùng chắn MC ) (2). Từ (1) và (2) suy ra MPK^=MBC^ (3)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh MN ^ AB

Xem đáp án » 24/10/2022 8,583

Câu 2:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh AB là tiếp tuyến của đường tròn đường kính CD

Xem đáp án » 24/10/2022 8,561

Câu 3:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh COD^=900  .

Xem đáp án » 24/10/2022 7,039

Câu 4:

Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .

Khi M di chuyển trên cung nhỏ AB Gọi E là giao điểm của HK và BN.

Xác định vị trí của điểm M để (MK.AN + ME.NB) có giá trị lớn nhất.

Xem đáp án » 13/07/2024 6,195

Câu 5:

Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.

Gọi H là trực tâm của tam giác BPQ. Chứng minh H là trung điểm của OA;

Xem đáp án » 13/07/2024 5,950

Câu 6:

Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và. B Nối AC cắt MN tại E.

Chứng minh AE.AC - AI.IB = AI2.

Xem đáp án » 13/07/2024 5,515

Câu 7:

Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB

Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.

Xem đáp án » 13/07/2024 5,227

Bình luận


Bình luận