Câu hỏi:

13/07/2024 1,326

Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.

Xác định vị trí của đường kính CD để tam giác BPQ có diện tích nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

SBPQ=12AB(AP+AQ)=14AB.(AE+AF) (3)

Áp dụng bất đẳng thức Cô si với hai số không âm AE và AF ta có: AE + AF  (4)

( Dấu “=” xảy ra AE =AF)

Từ (3) và (4)  (5)SΔBPQ12.AB.AE.AF

Lại có: Áp dụng hệ thức trong tam giác vuông EBF ta có:

AE.AF = AB2 (6) Từ (5) và (6) ta có SBPQAB22

Xảy ra dấu bằng khi AE = AF

Tam giác EBF vuông cân tại B

ACBD là hình vuông nên CD vuông góc AB

Vậy: Khi đường kính CD vuông góc với đường kính AB thì tam giác PBQ có diện tích nhỏ nhất

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh MN ^ AB

Xem đáp án » 24/10/2022 9,165

Câu 2:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh AB là tiếp tuyến của đường tròn đường kính CD

Xem đáp án » 24/10/2022 8,994

Câu 3:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh COD^=900  .

Xem đáp án » 24/10/2022 8,153

Câu 4:

Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.

Gọi H là trực tâm của tam giác BPQ. Chứng minh H là trung điểm của OA;

Xem đáp án » 13/07/2024 7,670

Câu 5:

Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .

Khi M di chuyển trên cung nhỏ AB Gọi E là giao điểm của HK và BN.

Xác định vị trí của điểm M để (MK.AN + ME.NB) có giá trị lớn nhất.

Xem đáp án » 13/07/2024 7,247

Câu 6:

Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và. B Nối AC cắt MN tại E.

Chứng minh AE.AC - AI.IB = AI2.

Xem đáp án » 13/07/2024 7,055

Câu 7:

Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB

Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.

Xem đáp án » 13/07/2024 6,593
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua