Câu hỏi:

13/07/2024 3,013

Trên đoạn thẳng AB cho điểm C nằm giữa A và B Trên cùng một nửa mặt phẳng có bờ là AB kẻ hai tia Ax và By cùng vuông góc với AB Trên tia Ax lấy điểm I, tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại P ( P khác I)

Giả sử A, B, I cố định. Hãy xác định vị trí của điểm C sao cho diện tích tứ giác ABKI lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Từ giả thiết suy ra tứ giác AIKB là hình thang vuông, gọi s là diện tích của AIKB, khi đó ta có: . Dễ thấy s lớn nhất khi và chỉ khi KB lớn nhất (do A, B, I cố định).

Xét các tam giác vuông AICBKC có:    suy ra:  (góc có cạnh tương ứng vuông góc) hay  đồng dạng với (g-g).

Suy ra:ACBK=AIBCBK=AC.BCAI , khi đó: BK lớn nhất ACBC lớn nhất

Theo BĐT Côsi có:AC.CBAC+CB22=AB24 , dấu “=” xảy ra khi và chỉ khi C là trung điểm của AB Vậy diện tích tứ giác AIBK lớn nhất khi và chỉ khi C là trung điểm của AB

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi I là trung điểm của CD ta có I là tâm đường tròn ngoại tiếp tam giác COD đường kính CD có IO là bán kính.

Theo tính chất tiếp tuyến ta có AC ^ AB; BD ^ AB => AC // BD => tứ giác ACDB là hình thang. Lại có I là trung điểm của CD; O là trung điểm của AB => IO là đường trung bình của hình thang ACDB

 IO // AC, mà AC ^ AB => IO ^ AB tại O => AB là tiếp tuyến tại O của đường tròn đường kính CD