Cho bốn điểm phân biệt A, B, C, D thỏa mãn ABCD là hình thang cân và ABCD, I là giao điểm của AD và BC. Khẳng định nào sau đây sai?
Cho bốn điểm phân biệt A, B, C, D thỏa mãn ABCD là hình thang cân và ABCD, I là giao điểm của AD và BC. Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì nên CD = 2AB và CD song song với AB. Do đó phương án B đúng.
Do CD = 2AB và CD song song với AB nên CD là đáy lớn và AB là đáy nhỏ của hình thang cân.
Khi đó I là giao điểm của AD và BC nên nằm ngoài hình thang cân.
Do đó phương án A đúng.
Xét DIDC có AB // CD nên ta có:
Mà AD = BC (tính chất hình thang cân)
Do đó IA = AD = IB = BC = ID = IC nên phương án C đúng.
Ta có suy ra CI = 2BI. Do đó phương án D là sai.
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Theo hình vẽ ta thấy có 9 vectơ thỏa mãn là:
.
Lời giải
Đáp án đúng là: B
• là hai vectơ không cùng phương, cùng hướng nên là sai.
• là hai vectơ không cùng phương, cùng hướng nên là sai.
• ABCD là hình thoi nên AD // BC và AD = BC nên . Do đó phương án D là sai.
• ABCD là hình thoi cạnh a nên AB = AD do đó DABD cân tại A.
Lại có = 60 nên tam giác ABD đều, do đó BD = a.
Suy ra nên phương án B đúng.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.