Câu hỏi:

01/12/2022 308

Hàm số \(y{\rm{ }} = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn A.

Ta có \(y = x + \frac{1}{{x + 1}}\) \( \Rightarrow y' = 1 - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\) .

\( \Rightarrow y'' = \frac{2}{{{{\left( {x + 1} \right)}^3}}}\) \( \Rightarrow {y^{\left( 3 \right)}} = \frac{{ - 6}}{{{{\left( {x + 1} \right)}^4}}}\) \( \Rightarrow {y^{\left( 4 \right)}} = \frac{{24}}{{{{\left( {x + 1} \right)}^5}}}\) \( \Rightarrow {y^{(5)}} = - \frac{{120}}{{{{(x + 1)}^6}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :

\(\left( I \right):y' = f'\left( x \right)\)\( = - 1 - \frac{2}{{{{(x - 1)}^2}}} < 0,\forall x \ne 1\).               \(\left( {II} \right):y'' = f''\left( x \right)\)\( = \frac{4}{{{{(x - 1)}^2}}} > 0,\forall x \ne 1\).

Mệnh đề nào đúng?

Xem đáp án » 01/12/2022 3,091

Câu 2:

Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}\). Giá trị \(f''\left( 0 \right)\) bằng

Xem đáp án » 01/12/2022 2,867

Câu 3:

Cho hàm số \(y = {\rm{sin2}}x\). Chọn khẳng định đúng

Xem đáp án » 01/12/2022 2,285

Câu 4:

Cho hàm số \(y = \sin 2x\). Tính \(y''\)

Xem đáp án » 01/12/2022 2,145

Câu 5:

Cho hàm số \[y = \frac{1}{{x - 3}}\]. Khi đó :

Xem đáp án » 01/12/2022 1,896

Câu 6:

Cho hàm số \(y = \sin 2x\). Tính \(y'''(\frac{\pi }{3})\), \({y^{(4)}}(\frac{\pi }{4})\)

Xem đáp án » 01/12/2022 1,559

Câu 7:

Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:

Xem đáp án » 01/12/2022 1,348

Bình luận


Bình luận
Vietjack official store