Câu hỏi:
01/12/2022 402Hàm số \[y = x\sqrt {{x^2} + 1} \] có đạo hàm cấp \(2\) bằng :
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn C.
Ta có: \[y' = \sqrt {{x^2} + 1} + x\frac{x}{{\sqrt {{x^2} + 1} }} = \frac{{2{x^2} + 1}}{{\sqrt {{x^2} + 1} }}\] ; \[y'' = \frac{{4x\sqrt {{x^2} + 1} - \left( {2{x^2} + 1} \right)\frac{x}{{\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}} = \frac{{2{x^3} + 3x}}{{\left( {1 + {x^2}} \right)\sqrt {1 + {x^2}} }}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}\). Giá trị \(f''\left( 0 \right)\) bằng
Câu 2:
Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :
Mệnh đề nào đúng?
Câu 6:
Cho hàm số \(y = \sin 2x\). Tính \(y'''(\frac{\pi }{3})\), \({y^{(4)}}(\frac{\pi }{4})\)
Câu 7:
Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:
về câu hỏi!