Câu hỏi:
01/12/2022 1,510Cho hàm số \(y = \sin 2x\). Tính \(y'''(\frac{\pi }{3})\), \({y^{(4)}}(\frac{\pi }{4})\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn A.
Ta có \(y''' = - 8\cos 2x,{\rm{ }}{y^{(4)}} = 16\sin 2x\)
Suy ra \(y'''(\frac{\pi }{3}) = - 8\cos \frac{{2\pi }}{3} = 4;{\rm{ }}{y^{(4)}}(\frac{\pi }{4}) = 16\sin \frac{\pi }{2} = 16\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}\). Giá trị \(f''\left( 0 \right)\) bằng
Câu 2:
Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :
Mệnh đề nào đúng?
Câu 6:
Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:
về câu hỏi!