Câu hỏi:

01/12/2022 184

Tính đạo hàm cấp n của hàm số \(y = \frac{{2x + 1}}{{x + 2}}\)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Ta có \(y' = \frac{3}{{{{(x + 2)}^2}}},y'' = - \frac{{3{{\left[ {{{(x + 2)}^2}} \right]}^'}}}{{{{(x + 2)}^4}}} = \frac{{ - 3.2}}{{{{(x + 2)}^3}}}\)

\(y''' = \frac{{3.2.3}}{{{{(x + 2)}^4}}}\). Ta chứng minh \({y^{(n)}} = \frac{{{{( - 1)}^{n - 1}}.3.n!}}{{{{(x + 2)}^{n + 1}}}}\)

\( \bullet \) Với \(n = 1 \Rightarrow y' = \frac{{{{( - 1)}^0}.3}}{{{{(x + 2)}^2}}} = \frac{3}{{{{(x + 2)}^2}}}\) đúng

\( \bullet \) Giả sử \({y^{(k)}} = \frac{{{{( - 1)}^{k - 1}}.3.k!}}{{{{(x + 2)}^{k + 1}}}}\)

\( \Rightarrow {y^{(k + 1)}} = \left( {{y^{(k)}}} \right)' = - \frac{{{{( - 1)}^{k - 1}}.3.k!.\left[ {{{(x + 2)}^{k + 1}}} \right]'}}{{{{(x + 2)}^{2k + 2}}}} = \frac{{{{( - 1)}^k}.3.(k + 1)!}}{{{{(x + 2)}^{k + 2}}}}\)

Theo nguyên lí quy nạp ta có điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :

\(\left( I \right):y' = f'\left( x \right)\)\( = - 1 - \frac{2}{{{{(x - 1)}^2}}} < 0,\forall x \ne 1\).               \(\left( {II} \right):y'' = f''\left( x \right)\)\( = \frac{4}{{{{(x - 1)}^2}}} > 0,\forall x \ne 1\).

Mệnh đề nào đúng?

Xem đáp án » 01/12/2022 3,092

Câu 2:

Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}\). Giá trị \(f''\left( 0 \right)\) bằng

Xem đáp án » 01/12/2022 2,867

Câu 3:

Cho hàm số \(y = {\rm{sin2}}x\). Chọn khẳng định đúng

Xem đáp án » 01/12/2022 2,285

Câu 4:

Cho hàm số \(y = \sin 2x\). Tính \(y''\)

Xem đáp án » 01/12/2022 2,146

Câu 5:

Cho hàm số \[y = \frac{1}{{x - 3}}\]. Khi đó :

Xem đáp án » 01/12/2022 1,896

Câu 6:

Cho hàm số \(y = \sin 2x\). Tính \(y'''(\frac{\pi }{3})\), \({y^{(4)}}(\frac{\pi }{4})\)

Xem đáp án » 01/12/2022 1,561

Câu 7:

Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:

Xem đáp án » 01/12/2022 1,349

Bình luận


Bình luận
Vietjack official store