Câu hỏi:

01/12/2022 214

Tính đạo hàm cấp n của hàm số \(y = \frac{{2x + 1}}{{{x^2} - 5x + 6}}\)

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Ta có: \(2x + 1 = 7(x - 2) - 5(x - 3)\); \({x^2} - 5x + 6 = (x - 2)(x - 3)\)

Suy ra \(y = \frac{7}{{x - 3}} - \frac{5}{{x - 2}}\).

\({\left( {\frac{1}{{x - 2}}} \right)^{(n)}} = \frac{{{{( - 1)}^n}{{.1}^n}.n!}}{{{{(x - 2)}^{n + 1}}}} = \frac{{{{( - 1)}^n}.n!}}{{{{(x - 2)}^{n + 1}}}},{\left( {\frac{1}{{x - 2}}} \right)^{(n)}} = \frac{{{{( - 1)}^n}.n!}}{{{{(x - 3)}^{n + 1}}}}\)

Nên \({y^{(n)}} = \frac{{{{( - 1)}^n}.7.n!}}{{{{(x - 2)}^{n + 1}}}} - \frac{{{{( - 1)}^n}.5.n!}}{{{{(x - 3)}^{n + 1}}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :

\(\left( I \right):y' = f'\left( x \right)\)\( = - 1 - \frac{2}{{{{(x - 1)}^2}}} < 0,\forall x \ne 1\).               \(\left( {II} \right):y'' = f''\left( x \right)\)\( = \frac{4}{{{{(x - 1)}^2}}} > 0,\forall x \ne 1\).

Mệnh đề nào đúng?

Xem đáp án » 01/12/2022 3,082

Câu 2:

Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}\). Giá trị \(f''\left( 0 \right)\) bằng

Xem đáp án » 01/12/2022 2,856

Câu 3:

Cho hàm số \(y = {\rm{sin2}}x\). Chọn khẳng định đúng

Xem đáp án » 01/12/2022 2,268

Câu 4:

Cho hàm số \(y = \sin 2x\). Tính \(y''\)

Xem đáp án » 01/12/2022 2,139

Câu 5:

Cho hàm số \[y = \frac{1}{{x - 3}}\]. Khi đó :

Xem đáp án » 01/12/2022 1,890

Câu 6:

Cho hàm số \(y = \sin 2x\). Tính \(y'''(\frac{\pi }{3})\), \({y^{(4)}}(\frac{\pi }{4})\)

Xem đáp án » 01/12/2022 1,552

Câu 7:

Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:

Xem đáp án » 01/12/2022 1,340

Bình luận


Bình luận
Vietjack official store