Câu hỏi:

01/12/2022 736 Lưu

Tính đạo hàm cấp n của hàm số \(y = \sqrt {2x + 1} \)

A. \({y^{(n)}} = \frac{{{{( - 1)}^{n + 1}}.3.5...(3n - 1)}}{{\sqrt {{{(2x + 1)}^{2n - 1}}} }}\)
B. \({y^{(n)}} = \frac{{{{( - 1)}^{n - 1}}.3.5...(2n - 1)}}{{\sqrt {{{(2x + 1)}^{2n - 1}}} }}\)
C. \({y^{(n)}} = \frac{{{{( - 1)}^{n + 1}}.3.5...(2n - 1)}}{{\sqrt {{{(2x + 1)}^{2n + 1}}} }}\)
D. \({y^{(n)}} = \frac{{{{( - 1)}^{n + 1}}.3.5...(2n - 1)}}{{\sqrt {{{(2x + 1)}^{2n - 1}}} }}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Ta có \(y' = \frac{1}{{\sqrt {2x + 1} }},y'' = - \frac{1}{{\sqrt {{{(2x + 1)}^3}} }},y''' = \frac{3}{{\sqrt {{{(2x + 1)}^5}} }}\)

Bằng quy nạp ta chứng minh được: \({y^{(n)}} = \frac{{{{( - 1)}^{n + 1}}.3.5...(2n - 1)}}{{\sqrt {{{(2x + 1)}^{2n - 1}}} }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[4y - y' = 0\].
B. \[4y + y'' = 0\].
C. \(y = y'tan2x\).
D. \({y^2} = {\left( {y'} \right)^2} = 4\).

Lời giải

Hướng dẫn giải:

Chọn B.

Ta có: \(y' = 2{\rm{cos2}}x\); \[y'' = - 4{\rm{sin2}}x\]. \[ \Rightarrow 4y + y'' = 0\].

Lời giải

Hướng dẫn giải:

Chọn A.

Ta có: \(y = f\left( x \right)\)\( = \frac{{ - {x^2} + x + 2}}{{x - 1}}\)\( = - x + \frac{2}{{x - 1}}\) \[ \Rightarrow y' = - 1 - \frac{2}{{{{\left( {x - 1} \right)}^2}}}\]; \[y'' = \frac{4}{{{{\left( {x - 1} \right)}^3}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y'' = - \sin 2x\)
B. \(y'' = - 4\sin x\)
C. \(y'' = \sin 2x\)
D. \(y'' = - 4\sin 2x\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y'' = 0\).
B. \(y'' = \frac{1}{{{{\left( {x - 2} \right)}^2}}}\).
C. \(y'' = - \frac{4}{{{{\left( {x - 2} \right)}^2}}}\).
D. \(y'' = \frac{4}{{{{\left( {x - 2} \right)}^3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y'''\left( 1 \right) = \frac{3}{8}\].
B. \[y'''\left( 1 \right) = \frac{1}{8}\].
C. \[y'''\left( 1 \right) = - \frac{3}{8}\].
D. \[y'''\left( 1 \right) = - \frac{1}{4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y'' = - \frac{{2\sin x}}{{{{\cos }^3}x}}\].
B. \[y'' = \frac{1}{{{{\cos }^2}x}}\].
C. \[y'' = - \frac{1}{{{{\cos }^2}x}}\].
D. \[y'' = \frac{{2\sin x}}{{{{\cos }^3}x}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP