Câu hỏi:

16/12/2022 1,190 Lưu

2xx2+1+xlnxdx có dạng a3x2+13+b6x2lnx14x2+C, trong đó a,  b là hai số hữu tỉ. Giá trị a bằng:

A. 3

B. 2

C. 1

D. không tồn tại 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề, ta cần tìm 2xx2+1+xlnxdx. Sau đó, ta xác định giá trị của .

Ta có:

2xx2+1+xlnxdx=2xx2+1dx+xlnxdx.

Để tìm 2xx2+1+xlnxdx ta đặt I1=2xx2+1dx I2=xlnxdx và tìm I1,I2.

*I1=2xx2+1dx.

Dùng phương pháp đổi biến.

Đặt t=x2+1,  t1 ta được t2=x2+1,  xdx=tdt.

Suy ra:

I1=2xx2+1dx=2t2dt=23t3+C1=23x2+13+C1, trong đó C1 là 1 hằng số.

*I2=xlnxdx.

Dùng phương pháp nguyên hàm từng phần.

Đặt u=lnxdv=xdxdu=1xdxv=12x2, ta được:

I2=xlnxdx=udv=uvvdu=12x2lnx12x21xdx=12x2lnx12xdx=12x2lnx14x2+C2.

2xx2+1+xlnxdx=I1+I2=23x2+13+C1+12x2lnx14x2+C2=23x2+13+12x2lnx14x2+C.

Suy ra để  2xx2+1+xlnxdx có dạng a3x2+13+b6x2lnx14x2+C thì  a=2,  b=3.

Vậy đáp án chính xác là đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. cotxx+C

B. cotxx+C

C. cotx+x+C

D. tanx+x+C

Lời giải

Ta có: cot2xdx=cot2x+11dx=cotxx+C.

Vậy ta chọn B.

Câu 2

A. ln2x+C

B. lnx+C

C. ln2x2+C

D. lnx2+C

Lời giải

Ta có: lnxxdx=lnx.dlnx=ln2x2+C

Vậy ta chọn C.

Câu 3

A. lncotx2+C

B. lntanx2+C

C. lntanx2+C

D. lnsinx+C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 2ln(x+2)+1x+2+C.

B. 2ln(x+2)1x+2+C.

C. 2ln(x+2)3x+2+C.

D. 2ln(x+2)+3x+2+C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 12aF(ax+b)+C

B. a.F(ax+b)+C

C. 1aF(ax+b)+C

D. F(ax+b)+C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. J=ex2cosxsinx+C

B. J=ex2sinx+cosx+C

C. J=ex2sinxcosx+C

D. J=ex2sinx+cosx+1+C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 13cos3x

B. 3cos3x

C. 3cos3x  

D. 13cos3x

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP