Câu hỏi:

16/12/2022 907

x+1ex25x+4e7x3+cos2xdx có dạng a6ex+12+b2sin2x+C, trong đó a,  b là hai số hữu tỉ. Giá trị a,  b lần lượt bằng:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phân tích:

Theo đề, ta cần tìm x+1e2x+1+cos2xdx. Sau đó, ta xác định giá trị của .

Ta có:

x+1ex25x+4e7x3+cos2xdx=x+1ex25x+4+7x3+cos2xdx=x+1ex+12dx+cos2xdx.

Để tìm x+1ex25x+4e7x3+cos2xdx ta đặt I1=x+1ex+12dx I2=cos2xdx và tìm I1,I2.

*Tìm I1=x+1ex+12dx.

Đặt t=x+12;dt=2x+1x+1'dx=2x+1dx.

I1=x+1ex+12dx=12etdt=12et+C1=12ex+12+C1, trong đó C1 à 1 hằng số.

*Tìm I2=cos2xdx.

I2=cos2xdx=12sin2x+C2.

x+1ex25x+4e7x3+cos2xdx=I1+I2=12ex+12+C1+12sin2x+C2=12ex+12+12sin2x+C.

Suy ra để x+1ex25x+4e7x3+cos2xdx  có dạng a6ex+12+b2sin2x+C thì  a=3,  b=1.

Vậy đáp án chính xác là đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Họ nguyên hàm của hàm số  f(x)=lnxx  là:

Xem đáp án » 16/12/2022 38,442

Câu 2:

Họ nguyên hàm của hàm số fx=1sinx là:

Xem đáp án » 16/12/2022 34,816

Câu 3:

Họ nguyên hàm Fx của hàm số fx=cot2x là :

Xem đáp án » 16/12/2022 30,388

Câu 4:

Họ tất cả các nguyên hàm của hàm số f(x)=2x+1(x+2)2 trên khoảng 2;+ 

Xem đáp án » 07/12/2022 23,135

Câu 5:

Tìm J=ex.sinxdx?

Xem đáp án » 16/12/2022 15,913

Câu 6:

Chof(x)dx=F(x)+C. Khi đó với a ¹ 0, ta có f(ax+b)dx bằng:

Xem đáp án » 16/12/2022 15,526

Câu 7:

Với phương pháp đổi biến số xt, nguyên hàm 1x2+1dx bằng:

Xem đáp án » 16/12/2022 10,463

Bình luận


Bình luận