Câu hỏi:
22/02/2023 198Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, \(AB = a,\,\,BC = a\sqrt 2 \), mặt \(\left( {A'BC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc \({30^0}\). Tính thể tích V của khối lăng trụ đó?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Đặt \(AA' = x\), chứng minh tam giác AB’C’ vuông tại B’
+) Xác định góc giữa hai mặt phẳng (AB’C’) và (A’B’C’)
+) Tính AA’. Tính thể tích khối lăng trụ.
Cách giải:
Xét tam giác vuông ABC có \(BC = \sqrt {A{C^2} - A{B^2}} = a\)
Đặt \(AA' = x\) ta có:
\(A'B = \sqrt {{x^2} + {a^2}} \)
\(A'C = \sqrt {{x^2} + 2{a^2}} \)
Xét tam giác A’BC có
\(A'{B^2} + B{C^2} = {x^2} + {a^2} + {a^2} = {x^2} + 2{a^2} = A'{C^2}\)
\( \Rightarrow \Delta A'BC\) vuông tại B.
Ta có: \(\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\\left( {A'BC} \right) \supset A'B \bot BC\\\left( {ABC} \right) \supset AB \bot BC\end{array} \right. \Rightarrow \left( {A'BC} \right);\left( {ABC} \right) = \left( {AB;A'B} \right) \Rightarrow ABA' = {30^0}\)
Xét tam giác vuông AA’B có: \(AA' = AB.tan{30^0} = \frac{a}{{\sqrt 3 }}\)
Vậy \(V{ & _{ABC.A'B'C'}} = AA'.{S_{ABC}} = \frac{a}{{\sqrt 3 }}.\frac{1}{2}{a^2} = \frac{{{a^3}\sqrt 3 }}{6}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 6:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 7:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!