Câu hỏi:

22/02/2023 363

Khẳng định nào dưới đây về hàm số \(y = - {x^4} - 3{x^2} + 2\) là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Điểm \({x_0}\) được gọi là điểm cực đại của hàm số \( \Leftrightarrow \left\{ \begin{array}{l}y'\left( {{x_0}} \right) = 0\\y''\left( {{x_0}} \right) < 0\end{array} \right.\)

Điểm \({x_0}\) được gọi là điểm cực tiểu của hàm số \( \Leftrightarrow \left\{ \begin{array}{l}y'\left( {{x_0}} \right) = 0\\y''\left( {{x_0}} \right) > 0\end{array} \right.\)

Cách giải:

TXĐ: \(D = R\)

\(y' = - 4{x^3} - 6x = 0 \Leftrightarrow x = 0\)

\(y'' = - 12x - 6 \Rightarrow y''\left( 0 \right) = - 6 < 0\)

\( \Rightarrow \) Hàm số đạt cực đại tại \(x = 0\) và không có cực tiểu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

+) Gọi hai điểm A, B thuộc đồ thị hàm số, lưu ý điều kiện nằm ở hai nhánh khác nhau.

+) Tính AB, sử dụng BĐT Cauchy để tìm GTNN của AB.

Cách giải:

TXĐ: \(D = R\backslash \left\{ { - 1} \right\}\)

Ta có: \(y = \frac{{2x - 1}}{{x + 1}} = 2 - \frac{3}{{x + 1}}\)

Đồ thị hàm số có TCĐ \(x = - 1\), gồm hai nhánh nằm về hai phía đường thẳng \(x = - 1\).

Gọi A là điểm thuộc nhánh trái của đồ thị hàm số \( \Rightarrow {x_A} < - 1 \Rightarrow - 1 - {x_A} > 0\)

Đặt \(a = - 1 - {x_A} > 0 \Rightarrow {x_A} = - 1 - a \Rightarrow A\left( { - 1 - a;2 + \frac{3}{a}} \right)\)

Gọi B là điểm thuộc nhánh phải của đồ thị hàm số \( \Rightarrow {x_B} > - 1 \Rightarrow {x_B} + 1 > 0\)

Đặt \(b = 1 + {x_B} > 0 \Rightarrow {x_B} = - 1 + b \Rightarrow B\left( { - 1 + b;2 - \frac{3}{b}} \right)\)

\( \Rightarrow A{B^2} = {\left( {a + b} \right)^2} + {\left( {\frac{3}{b} + \frac{3}{a}} \right)^2} = {\left( {a + b} \right)^2} + \frac{{9{{\left( {a + b} \right)}^2}}}{{{a^2}{b^2}}} = {\left( {a + b} \right)^2}\left( {1 + \frac{9}{{{a^2}{b^2}}}} \right) = \left( {{a^2} + {b^2} + 2ab} \right)\left( {1 + \frac{9}{{{a^2}{b^2}}}} \right)\) Áp dụng BĐT Cauchy ta có \(A{B^2} \ge \left( {2ab + 2ab} \right).2\sqrt {\frac{9}{{{a^2}{b^2}}}} = 4ab.2.\frac{3}{{ab}} = 24 \Rightarrow AB \ge 2\sqrt 6 \)

Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a = b > 0\\1 = \frac{3}{{ab}}\end{array} \right. \Leftrightarrow a = b = \sqrt 3 \)

Vậy \(A{B_{\min }} = 2\sqrt 6 \)

Câu 2

Lời giải

Đáp án C

Phương pháp:

+) Giải phương trình \(y' = 0\) tìm các điểm cực trị của hàm số

+) Tính khoảng cách giữa hai điểm cực trị.

Cách giải:

TXĐ: \(D = R\backslash \left\{ 1 \right\}\)

Ta có \(y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}} \Rightarrow y' = 1 - \frac{1}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = - 1\\x = 2 \Rightarrow y = 3\end{array} \right.\)

\( \Rightarrow \) Hai điểm cực trị của đồ thị hàm số là \(A\left( {0; - 1} \right);\,\,\,B\left( {2;3} \right) \Rightarrow AB = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP