Câu hỏi:
22/02/2023 138Cho hình chữ nhật ABCD, cạnh \(AB = 8,\,\,AD = 6\). Gọi M, N lần lượt là trung điểm các cạnh BC và AD. Quay hình chữ nhật ABCD quanh đường thẳng MN, ta được một hình tròn xoay. Tính thể tích V của khối tròn xoay đó?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Quay hình chữ nhật ABCD quanh MN ta được hình trụ có chiều cao AB và bán kính đáy \(\frac{{BC}}{2}\)
Cách giải:
Quay hình chữ nhật ABCD quanh MN ta được hình trụ có:
Chiều cao \(h = AB = 8\)
Bán kính đáy \(R = \frac{{BC}}{2} = \frac{{AD}}{2} = 3\)
Vậy thể tích khối trụ là \(V = \pi {R^2}h = \pi {.3^2}.8 = 48\pi \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 6:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 7:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!