Câu hỏi:

22/02/2023 116

Tìm phương trình các đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {4{x^2} + 1} + 2x}}{x}\)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp :

\(\mathop {\lim }\limits_{x \to \infty } y = a \Rightarrow y = a\) là đường TCN của đồ thị hàm số.

Cách giải :

\(y = \frac{{\sqrt {4{x^2} + 1} + 2x}}{x},\) TXĐ: \(D = R\backslash \left\{ 0 \right\}\)

\( \Rightarrow \mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {4{x^2} + 1} + 2x}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {4 + \frac{1}{{{x^2}}}} + 2}}{1} = 4\)

\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} + 2x}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {4 + \frac{1}{{{x^2}}}} + 2}}{1} = 0\)

Vậy đồ thị hàm số có hai đường tiệm cận ngang là \(y = 4\)\(y = 0\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)

Xem đáp án » 22/02/2023 3,552

Câu 2:

Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)

Xem đáp án » 22/02/2023 3,246

Câu 3:

Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?

Xem đáp án » 22/02/2023 2,801

Câu 4:

Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?

Xem đáp án » 22/02/2023 1,768

Câu 5:

Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)

Xem đáp án » 22/02/2023 1,585

Câu 6:

Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.

Xem đáp án » 22/02/2023 1,139

Câu 7:

Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:

Cho bảng biến của hàm số y = f(x) như sau: Đồ thị của hàm số đã cho có tổng số bao nhiêu (ảnh 1)

Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?

Xem đáp án » 22/02/2023 1,017

Bình luận


Bình luận