Câu hỏi:
22/02/2023 66Đồ thị hàm số \(y = {x^4} - 2{x^2} + 3\) có điểm cực đại nằm trên đồ thị hàm số nào dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Câu 15: Đáp án B
Phương pháp:
Giải hệ \(\left\{ \begin{array}{l}y' = 0\\y'' < 0\end{array} \right.\) xác định điểm cực đại của hàm số và thử từng đáp án.
Cách giải:
Ta có \(y' = 4{x^3} - 4x;\,\,\,y'' = 12{x^2} - 4\)
Giải hệ \(\left\{ \begin{array}{l}y' = 0\\y'' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x^3} - 4x = 0\\12{x^2} - 4 < 0\end{array} \right. \Leftrightarrow x = 0 \Rightarrow y = 3 \Rightarrow \) Điểm cực đại của đồ thị hàm số là \(\left( {0;3} \right)\) thuộc đồ thị hàm số \(y = \frac{{x - 6}}{{x - 2}}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 6:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 7:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!