Câu hỏi:
22/02/2023 94Tìm m để phương trình \({\log _2}\sqrt {{x^2} - 3x + 2} + {\log _{\frac{1}{2}}}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \) có nghiệm?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Sử dụng phương pháp hàm số.
Cách giải:
ĐK: \(\left\{ \begin{array}{l}{x^2} - 3x + 2 > 0\\x - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\\x > m\end{array} \right.\)
\({\log _2}\sqrt {{x^2} - 3x + 2} + {\log _{\frac{1}{2}}}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \)
\( \Leftrightarrow {\log _2}\sqrt {{x^2} - 3x + 2} - {\log _2}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \)
\( \Leftrightarrow {\log _2}\sqrt {{x^2} - 3x + 2} + \sqrt {{x^2} - 3x + 2} = {\log _2}\left( {x - m} \right) + x - m\)
Xét hàm số \(f\left( t \right) = {\log _2}t + t\,\,\left( {t > 0} \right)\) ta có \(f'\left( t \right) = \frac{1}{{t\ln 2}} + 1 > 0\,\,\forall t > 0 \Rightarrow \) Hàm số đồng biến trên \(\left( {0; + \infty } \right)\)
\( \Rightarrow \sqrt {{x^2} - 3x + 2} = x - m\)
\( \Leftrightarrow {x^2} - 3x + 2 = {x^2} - 2mx + {m^2}\)
\( \Leftrightarrow \left( {2m - 3} \right)x + 2 - {m^2} = 0\,\,\left( * \right)\)
TH1: \(2m - 3 = 0 \Leftrightarrow m = \frac{3}{2} \Rightarrow \) Phương trình \(\left( * \right) \Leftrightarrow 0.x - \frac{1}{4} = 0\) (vô nghiệm)
TH2: \(m \ne \frac{3}{2} \Rightarrow x = \frac{{{m^2} - 2}}{{2m - 3}}\)
Để phương trình có nghiệm \( \Rightarrow \left\{ \begin{array}{l}x \in \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\\x > m\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\frac{{{m^2} - 2}}{{2m - 3}} < 1\\\frac{{{m^2} - 2}}{{2m - 3}} > 2\end{array} \right.\\\frac{{{m^2} - 2}}{{2m - 3}} > m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\frac{{{m^2} - 2}}{{2m - 3}} - 1 < 0\\\frac{{{m^2} - 2}}{{2m - 3}} - 2 > 0\end{array} \right.\\\frac{{{m^2} - 2}}{{2m - 3}} - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\frac{{{m^2} - 2 - 2m + 3}}{{2m - 3}} < 0\\\frac{{{m^2} - 2 - 4m + 6}}{{2m - 3}} > 0\end{array} \right.\\\frac{{{m^2} - 2 - 2{m^2} + 3}}{{2m - 3}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\frac{{{m^2} - 2m + 1}}{{2m - 3}} < 0\\\frac{{{m^2} - 4m + 4}}{{2m - 3}} > 0\end{array} \right.\\\frac{{ - {m^2} + 3m - 2}}{{2m - 3}} > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m \in \left( { - \infty ;\frac{3}{2}} \right)\backslash \left\{ 1 \right\}\\m \in \left( {\frac{3}{2}; + \infty } \right)\backslash \left\{ 2 \right\}\end{array} \right.\\m \in \left( { -CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 6:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 7:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!