Câu hỏi:

22/02/2023 193

Tìm tất cả các giá trị của tham số m để bất phương trình \(m\left( {x - 1} \right) < {\left( {x + 1} \right)^2}\) nghiệm đúng với mọi \(x \in \left( {1;4} \right]\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Biến đổi phương trình về dạng \(m < f\left( x \right)\,\,\forall x \in \left( {1;4} \right] \Rightarrow m < \mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right)\)

+) Khảo sát hàm số \(y = f\left( x \right)\) và tìm \(\mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right)\)

Cách giải:

\(\forall x \in \left( {1;4} \right] \Rightarrow x - 1 > 0 \Rightarrow m < \frac{{{{\left( {x + 1} \right)}^2}}}{{x - 1}}\,\,\forall x \in \left( {1;4} \right]\)

Đặt \(f\left( x \right) = \frac{{{{\left( {x + 1} \right)}^2}}}{{x - 1}}\) ta có \(m < f\left( x \right)\,\,\forall x \in \left( {1;4} \right] \Rightarrow m < \mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right)\)

Ta có \(f'\left( x \right) = \frac{{2\left( {x + 1} \right)\left( {x - 1} \right) - {{\left( {x + 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2{x^2} - 2 - {x^2} - 2x - 1}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\)

BBT:

Tìm tất cả các giá trị của tham số m để bất phương trình m(x - 1) < (x + 1)^2 nghiệm đúng  (ảnh 1)

Dựa vào BBT ta có: \(\mathop {\min }\limits_{\left( {1;4} \right]} f\left( x \right) = f\left( 3 \right) = 8 \Rightarrow m < 8\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?

Xem đáp án » 22/02/2023 2,721

Câu 2:

Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)

Xem đáp án » 22/02/2023 2,308

Câu 3:

Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)

Xem đáp án » 22/02/2023 2,166

Câu 4:

Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?

Xem đáp án » 22/02/2023 1,491

Câu 5:

Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)

Xem đáp án » 22/02/2023 1,223

Câu 6:

Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.

Xem đáp án » 22/02/2023 1,005

Câu 7:

Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:

Cho bảng biến của hàm số y = f(x) như sau: Đồ thị của hàm số đã cho có tổng số bao nhiêu (ảnh 1)

Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?

Xem đáp án » 22/02/2023 985

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL