Câu hỏi:
22/02/2023 279Cho \(\left( {{C_m}} \right):y = 2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4\). Gọi T là tập các giá trị của m thỏa mãn \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox, tính tổng S các phần tử của T.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình đó có 2 nghiệm phân biệt.
Cách giải:
Xét phương trình hoành độ giao điểm \(2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4 = 0\,\,\left( 1 \right)\)
\( \Leftrightarrow \left( {x - 2} \right)\left( {2{x^2} + \left( {1 - 3m} \right)x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\2{x^2} + \left( {1 - 3m} \right)x + 2 = 0\,\,\left( * \right)\end{array} \right.\)
Để đồ thị \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox \( \Rightarrow \) Phương trình (1) có 2 nghiệm phân biệt.
TH1: (*) có 2 nghiệm phân biệt trong đó có một nghiệm \(x = 2\)
\( \Rightarrow \left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} - 8 > 0\\8 + 2\left( {1 - 3m} \right) + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} > 8\\m = 2\end{array} \right.\left( {tm} \right)\)
TH2: (*) có nghiệm duy nhất khác 2.
\(\left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} - 8 = 0\\8 + 2\left( {1 - 3m} \right) + 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {1 - 3m} \right)^2} = 8\\m \ne 2\end{array} \right. \Leftrightarrow 1 - 3m = \pm 2\sqrt 2 \Leftrightarrow m = \frac{{1 \mp 2\sqrt 2 }}{3}\)
\( \Rightarrow S = \left\{ {2;\frac{{1 - 2\sqrt 2 }}{3};\frac{{1 + 2\sqrt 2 }}{3}} \right\}\)
\( \Rightarrow 2 + \frac{{1 - 2\sqrt 2 }}{3} + \frac{{1 + 2\sqrt 2 }}{3} = \frac{8}{3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 2:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 6:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 7:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
về câu hỏi!