Câu hỏi:
22/02/2023 205Hiện nay, huyện X có 100.000 người. Giả sử với tỉ lệ tăng dân số hằng năm không đổi là 1,75%, hỏi sau ít nhất bao nhiêu năm thì thì dân số huyện X vượt trên 140.000 người. Biết sự tăng dân số được tính theo công thức lãi kép liên tục là \(S = A{e^{nr}}\), với S là dân số sau n năm, A là số dân của năm lấy làm mốc tính, r là tỉ lệ tăng dân số hằng năm.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Áp dụng công thức bài toán cho.
Cách giải:
Áp dụng công thức ta có:
\(140000 = 100000.{e^{\frac{{1,75}}{{100}}.n}} \Leftrightarrow {e^{\frac{{1,75}}{{100}}.n}} = \frac{7}{5} \Leftrightarrow n \approx 19,22\)
Vậy phải sau 20 năm dân số huyện X mới vượt trên 140.000 người.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 6:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 7:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!