Câu hỏi:

22/02/2023 996

Một người vay 500 triệu đồng ngân hàng để lấy vốn làm ăn theo thể thức lãi kép với lãi suất không đổi trong suốt quá trình trả nợ là 1%/tháng (tính lãi ngân hàng). Mỗi tháng người đó phải trả 10 triệu đồng cho đến tháng cuối thì số tiền phải trả còn ít hơn 10 triệu. Hỏi số tiền phải trả trong tháng cuối là bao nhiêu? (Làm tròn đến hàng ngàn)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Sử dụng công thức trả góp: \(P{\left( {1 + r} \right)^n} = \frac{M}{r}\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]\) trong đó:

P: Số tiền vay ban đầu

M: Số tiền trả hàng kì

r: lãi suất

n: số kì hạn

Cách giải:

\(500{\left( {1 + 0,01} \right)^n} = \frac{{10}}{{0,01}}\left[ {{{\left( {1 + 0,01} \right)}^n} - 1} \right]\)

\( \Leftrightarrow 500{\left( {1 + 0,01} \right)^n} = 1000{\left( {1 + 0,01} \right)^n} - 1000\)

\( \Leftrightarrow 500{\left( {1 + 0,01} \right)^n} = 1000\)

\( \Leftrightarrow 1,{01^n} = 2 \Leftrightarrow n \approx {\log _{1,01}}2 \approx 69,99\)

\( \Rightarrow \) Số tiền phải trả trong tháng cuối là \(500{\left( {1 + 0,01} \right)^{69}} - \frac{{10}}{{0,01}}\left[ {{{\left( {1 + 0,01} \right)}^{69}} - 1} \right] \approx 6,553\) (triệu đồng)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

+) Gọi hai điểm A, B thuộc đồ thị hàm số, lưu ý điều kiện nằm ở hai nhánh khác nhau.

+) Tính AB, sử dụng BĐT Cauchy để tìm GTNN của AB.

Cách giải:

TXĐ: \(D = R\backslash \left\{ { - 1} \right\}\)

Ta có: \(y = \frac{{2x - 1}}{{x + 1}} = 2 - \frac{3}{{x + 1}}\)

Đồ thị hàm số có TCĐ \(x = - 1\), gồm hai nhánh nằm về hai phía đường thẳng \(x = - 1\).

Gọi A là điểm thuộc nhánh trái của đồ thị hàm số \( \Rightarrow {x_A} < - 1 \Rightarrow - 1 - {x_A} > 0\)

Đặt \(a = - 1 - {x_A} > 0 \Rightarrow {x_A} = - 1 - a \Rightarrow A\left( { - 1 - a;2 + \frac{3}{a}} \right)\)

Gọi B là điểm thuộc nhánh phải của đồ thị hàm số \( \Rightarrow {x_B} > - 1 \Rightarrow {x_B} + 1 > 0\)

Đặt \(b = 1 + {x_B} > 0 \Rightarrow {x_B} = - 1 + b \Rightarrow B\left( { - 1 + b;2 - \frac{3}{b}} \right)\)

\( \Rightarrow A{B^2} = {\left( {a + b} \right)^2} + {\left( {\frac{3}{b} + \frac{3}{a}} \right)^2} = {\left( {a + b} \right)^2} + \frac{{9{{\left( {a + b} \right)}^2}}}{{{a^2}{b^2}}} = {\left( {a + b} \right)^2}\left( {1 + \frac{9}{{{a^2}{b^2}}}} \right) = \left( {{a^2} + {b^2} + 2ab} \right)\left( {1 + \frac{9}{{{a^2}{b^2}}}} \right)\) Áp dụng BĐT Cauchy ta có \(A{B^2} \ge \left( {2ab + 2ab} \right).2\sqrt {\frac{9}{{{a^2}{b^2}}}} = 4ab.2.\frac{3}{{ab}} = 24 \Rightarrow AB \ge 2\sqrt 6 \)

Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a = b > 0\\1 = \frac{3}{{ab}}\end{array} \right. \Leftrightarrow a = b = \sqrt 3 \)

Vậy \(A{B_{\min }} = 2\sqrt 6 \)

Câu 2

Lời giải

Đáp án C

Phương pháp:

+) Giải phương trình \(y' = 0\) tìm các điểm cực trị của hàm số

+) Tính khoảng cách giữa hai điểm cực trị.

Cách giải:

TXĐ: \(D = R\backslash \left\{ 1 \right\}\)

Ta có \(y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}} \Rightarrow y' = 1 - \frac{1}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = - 1\\x = 2 \Rightarrow y = 3\end{array} \right.\)

\( \Rightarrow \) Hai điểm cực trị của đồ thị hàm số là \(A\left( {0; - 1} \right);\,\,\,B\left( {2;3} \right) \Rightarrow AB = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP