Câu hỏi:

27/07/2023 2,228

Cho hai đa thức:

P = 4x3yz2 – 3x2y – 2x3yz2 + x2y – 2xy + y + 5;

Q = –x3yz2 – 2x2y + 3 + 3x3yz2 + xy – y + 2.

a) Thu gọn và xác định bậc của mỗi đa thức P và Q.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) P = 4x3yz2 – 3x2y – 2x3yz2 + x2y – 2xy + y + 5

= (4x3yz2 – 2x3yz2) + (–3x2y + x2y) – 2xy + y + 5

= 2x3yz2 ‒ 2x2y – 2xy + y + 5.

Vậy P là đa thức bậc 3 + 1 + 2 = 6.

Q = –x3yz2 – 2x2y + 3 + 3x3yz2 + xy – y + 2

= (–x3yz2 + 3x3yz2) – 2x2y + xy – y + (3 + 2)

= 2x3yz2 – 2x2y + xy – y + 5.

Vậy Q là đa thức bậc 3 + 1 + 2 = 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt y = x2 – 1, ta đưa về phép chia đa thức cho đơn thức:

(9x3y – 6x2y2 + 12xy) : 3xy

= 9x3y : 3xy – 6x2y2 : 3xy + 12xy : 3xy

= 3x2 ‒ 2xy + 4.

Từ đó ta được thương cần tìm là:

 3x2 ‒ 2x(x2 ‒ 1) + 4 = 3x2 ‒ 2x3 + 2x + 4.

Lời giải

a) Có thể viết A = M ‒ N, trong đó:

M = (9x2 ‒ 6xy + 4y2 + 1)(3x + 2y)

= 9x2.(3x + 2y) – 6xy.(3x + 2y) + 4y2.(3x + 2y) + 1.(3x + 2y)

= 27x3 + 18x2y ‒ 18x2y ‒ 12xy2 + 12xy2 + 8y3 + 3x + 2y

= 27x3 + (18x2y ‒ 18x2y) + (‒12xy2 + 12xy2) + 8y3 + 3x + 2y

= 27x3 + 8y3 + 3x + 2y.

•  N=3x5y+89x2y4x3y:19x2y

=3x5y:19x2y+89x2y4:19x2yx3y:19x2y

= 27x3 + 8y3 ‒ 9x.

Từ đó: A = M – N

= 27x3 + 8y3 + 3x + 2y ‒ (27x3 + 8y3 ‒ 9x)

= 27x3 + 8y3 + 3x + 2y ‒ 27x3 ‒ 8y3 + 9x

= (27x3 ‒ 27x3) + (8y3 ‒ 8y3) + (3x + 9x) + 2y

= 12x + 2y.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP