Câu hỏi:
27/07/2023 623Xét hai hình bình hành MNBA và MNCB.
a) Chứng minh A, B, C là ba điểm thẳng hàng;
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Do MNBA và MNCB là hình bình hành
Suy ra AB // MN, BC // MN nên theo tiên đề Euclid, hai đường thẳng AB và BC trùng nhau
Vậy ba điểm A, B, C thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho AE = CF; lấy các điểm G thuộc BC, H thuộc AD sao cho BG = DH. Chứng minh EGFH là một hình bình hành và các đường thẳng AC, BD, EF, GH đồng quy.
Câu 2:
Cho hình bình hành ABCD với góc A tù. Dựng bên ngoài hình bình hành đó các tam giác đều ABE và DAF. Chứng minh rằng tam giác CEF là tam giác đều (Gợi ý: Chứng minh các tam giác AEF, DCF, BEC bằng nhau).
Câu 3:
Cho tam giác ABC không vuông tại A. Dựng bên ngoài tam giác đó hai tam giác ABD, ACE vuông cân tại đỉnh A rồi dựng hình bình hành AEID.
a) Chứng minh hai tam giác ABC và DAI bằng nhau.
Câu 4:
Chứng minh rằng nếu hai góc kề của mỗi cạnh của một tứ giác đều là hai góc bù nhau thì tứ giác đó là một hình bình hành.
Câu 5:
Cho hình thang ABCD với hai đáy AB, CD. Gọi K là trung điểm của BC. Lấy điểm A', D' sao cho K là trung điểm của AA' và DD'. Hỏi tứ giác AD'A'D là hình gì? Vì sao?
Câu 7:
d) Gọi K là trung điểm của BD, chứng minh KC = KI và KC vuông góc với KI. (Gợi ý: Chứng minh hai tam giác AKI và BKC bằng nhau).
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Đề kiểm tra Cuối kì 1 Toán 8 CTST có đáp án (Đề 1)
về câu hỏi!