Câu hỏi:

27/07/2023 209

c) Chứng minh đường thẳng BE vuông góc với đường thẳng CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Ta có  BAE^=BAC^+CAE^=BAC^+90° và  DAC^=BAC^+BAD^=BAC^+90°

Do đó  BAE^=DAC^.

Xét ∆BAE và ∆DAC có:

AB = AD;  BAE^=DAC^; AC = AE

Do đó ∆BAE = ∆DAC (c.g.c)

Suy ra  EBA^=CDA^

Gọi J là giao của DC và BE, ta có  JBA^=JDA^.

Gọi P là giao điểm của AB và CD.

Tam giác ADP vuông tại A nên  PDA^+DPA^=90°

Mà  PDA^=JBP^ và  DPA^=BPJ^ (đối đỉnh)

Do đó  JBP^+BPJ^=90°, suy ra  PJB^=90° hay CD vuông góc với BE.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Do ABCD là hình bình hành nên  BAD^=BCD^, AD = BC, AB = CD,  ABC^=ADC^

Ta có: AD = AH + DH, BC = BG +  CG

Mà BG = DH, AD = BC nên AH = CG

Xét ∆AEH và ∆CFG có:

AH = CG,  EAH^=FCG^ (do  BAD^=BCD^), AE = CF

Suy ra ∆AEH = ∆CFG (c.g.c) nên EH = FG.

Ta có: AB = AE + BE, CD = CF + DF

Mà AB = CD, AE = CF nên BE = DF

Xét ∆BEG và ∆DFH có:

BE = DF,  EBG^=HDF^ (do  ABC^=ADC^), BG = DH

Suy ra ∆BEG = ∆DFH (c.g.c) nên EG = FH.

Tứ giác EGFH có EH = FG, EG = FH nên là một hình bình hành.

Do ABCD là hình bình hành nên khi ta gọi O là giao điểm của AC thì O là trung điểm của BD.

Vì tứ giác BEDF là hình bình hành (do EB = DF và EB // DF) nên hai đường chéo EF cắt nhau DB tại trung điểm O của BD.

Tương tự, GH đi qua trung điểm O của BD.

Vậy các đường thẳng AC, BD, EF, GH đồng quy.

Lời giải

Media VietJack

Do ABCD là hình bình hành nên AB // CD

Gọi  BAD^=α

Vì AB // CD nên ta có  BAD^+ADC^=180° 

Suy ra  ADC^=180°BAD^=180°α

 CDF^=ADC^+ADF^=180°α+60°=240°α (do ∆AFD nên  ADF^=60°) (1)

Ta có:  EAF^+FAD^+DAB^+BAE^=360° 

Suy ra  EAF^=360°FAD^DAB^BAE^

Mà  FAD^=BAE^=60° (do ∆AFD và ∆ABE đều)

Suy ra  EAF^=360°60°60°α=240°α   2 

Từ (1) và (2) suy ra  CDF^=EAF^.

Xét ∆AEF và ∆DCF có

AF = DF ( vì ∆ADF đều);

 CDF^=EAF^ (chứng minh trên);

AE = DC (vì cùng bằng AB)

Do đó: ∆AEF =  ∆DCF (c.g.c)

Suy ra EF = CF (*)

 CBE^=ABC^+ABE^=ABC^+60°

Mà ABCD là hình bình hành nên  ABC^=ADC^=180°α

Suy ra  CBE^=180°α+60°=240°α, mà  CDF^=240°α (chứng minh trên)

Suy ra  CBE^=CDF^.

Xét ΔBCE và ΔDFC có:

BE = CD (vì cùng bằng AB);

 CBE^=CDF^ (chứng minh trên);

BC = DF (vì cùng bằng AD)

Do đó ∆BCE = ∆DFC (c.g.c)

Suy ra CE = CF (**)

Từ (*) và (**) suy ra: EF = CF = CE

Vậy ∆ECF là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay