Câu hỏi:

25/08/2023 231

Tìm x, biết: \(2 - 25{x^2} = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

\(2 - 25{x^2} = 0\)

\( \Leftrightarrow \left( {\sqrt 2 - 5x} \right)\left( {\sqrt 2 + 5x} \right) = 0\)

\(\sqrt 2 - 5x = 0\) hoặc \(\sqrt 2 + 5x = 0\)

\({\rm{x}} = \frac{{\sqrt 2 }}{5}\) hoặc \({\rm{x}} = \frac{{ - \,\sqrt 2 }}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phân tích đa thức \[3{x^3} - 8{x^2} - 41x + 30\] thành nhân tử

Lời giải

Lời giải

Đáp án đúng là: A

Theo đề ra ta có: \[3{x^3} - 8{x^2} - 41x + 30\]

\[ = 3{x^3} - 2{x^2} - 6{x^2} + 4x - 45x + 30\]

\[ = \left( {3{x^3} - 2{x^2}} \right) - \left( {6{x^2} - 4x} \right) - \left( {45x - 30} \right)\]

\[ = {x^2}\left( {3x - 2} \right) - 2x\left( {3x - 2} \right) - 15\left( {3x - 2} \right)\]

\[ = \left( {{x^2} - 2x - 15} \right)\left( {3x - 2} \right)\]

\[ = \left( {{x^2} + 3x - 5x - 15} \right)\left( {3x - 2} \right)\]

\[ = \left[ {\left( {{x^2} + 3x} \right) - \left( {5x + 15} \right)} \right]\left( {3x - 2} \right)\]

\[ = \left[ {x\left( {x + 3} \right) - 5\left( {x + 3} \right)} \right]\left( {3x - 2} \right)\]

\[ = \left( {3x - 2} \right)\left( {x - 5} \right)\left( {x + 3} \right)\]

Lời giải

Lời giải

Đáp án đúng là: C

Ta có: \[A = {x^4} + 3{x^3} - 27x - 81\]

\[ = \left( {{x^4} - 81} \right) + \left( {3{x^3} - 27x} \right)\]

\[ = \left( {{x^2} - 9} \right)\left( {{x^2} + 9} \right) + 3x\left( {{x^2} - 9} \right)\]

\[ = \left( {{x^2} - 9} \right)\left( {{x^2} + 3x + 9} \right)\]

Ta có: \[{x^2} + 3x + 9 = {x^2} + 2.\frac{3}{2}x + \frac{9}{4} + \frac{{27}}{4} \ge \frac{{27}}{4} > 0,\,\,\forall x \in \mathbb{R}\]

\(\left| x \right| < 3 \Leftrightarrow {x^2} < 9 \Leftrightarrow {x^2} - 9 < 0\)

Do đó \(A = \left( {{x^2} - 9} \right)\left( {{x^2} + 3x + 9} \right) < 0\) khi \(\left| x \right| < 3\)

Câu 3

Kết quả phân tích đa thức \[{{\rm{x}}^2}\; - {\rm{xy}} + {\rm{x}} - {\rm{y}}\] thành nhân tử là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Chọn câu trả lời đúng nhất.

Phân tích đa thức thành nhân tử \[{x^2}{y^2}z + x{y^2}{z^2} + {x^2}y{z^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \[{\left( {3{x^2} + 6x - 18} \right)^2} - {\left( {3{x^2} + 6x} \right)^2} = m\left( {x + n} \right)\left( {x - 1} \right)\]. Khi đó \[\frac{{\rm{m}}}{{\rm{n}}}\] bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay