Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
Ta có: \[a{x^4}{y^4}\,.\,4y = 4a{x^4}{y^5}\] và \[ - 4x{y^2}.{x^3}{y^3} = - 4{x^4}{y^5}\].
Để \[\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\] thì \[{\rm{4a}}{{\rm{x}}^{\rm{4}}}{{\rm{y}}^{\rm{5}}}{\rm{ = }} - {\rm{4}}{{\rm{x}}^{\rm{4}}}{{\rm{y}}^{\rm{5}}}\].
Do đó 4a = −4 nên a = −1 .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là: B
Điều kiện: \[5 - 3{\rm{x}} \ne 0\] hay \[{\rm{x}} \ne \frac{5}{3}\].
Ta có \[\frac{{7{\rm{x}} + 2}}{{5 - 3{\rm{x}}}} = \frac{{11}}{7}\] nên
\[\left( {7x + 2} \right)7 = 11\left( {5 - 3x} \right)\]
\[49{\rm{x}} + 14 = 55 - 33{\rm{x}}\]
\[82{\rm{x}} = 41\]
\[{\rm{x}} = \frac{1}{2}\] (TMĐK)
Lời giải
Lời giải
Đáp án đúng là: D
Theo tính chất cơ bản của phân thức đại số, ta có:
• \[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A}}{\rm{.M}}}}{{{\rm{B}}{\rm{.M}}}}\]\[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A}}{\rm{.M}}}}{{{\rm{B}}{\rm{.M}}}}\] (với M khác đa thức 0)
\[ \Rightarrow \frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A}}\left( { - {\rm{1}}} \right)}}{{{\rm{B}}\left( { - {\rm{1}}} \right)}}{\rm{ = }}\frac{{ - {\rm{A}}}}{{ - {\rm{B}}}}\]
• \[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A:N}}}}{{{\rm{B:N}}}}\] (với N là một nhân tử chung, N khác đa thức 0)
Mệnh đề \[\frac{{\rm{A}}}{{\rm{B}}}{\rm{ = }}\frac{{{\rm{A + M}}}}{{{\rm{B + M}}}}\]sai. Ví dụ: \[\frac{2}{3} \ne \frac{3}{4} = \frac{{2 + 1}}{{3 + 1}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.