Câu hỏi:

11/07/2024 1,540 Lưu

Cho tam giác không cân ABC đồng dạng với một tam giác có ba đỉnh là M, N, P. Biết rằng \(\frac{{AB}}{{NP}} = \frac{{AC}}{{PM}} = \frac{{BC}}{{MN}}\), hãy chỉ ra các đỉnh tương ứng và viết đúng kí hiệu đồng dạng của hai tam giác đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Vì \(\frac{{AB}}{{NP}} = \frac{{AC}}{{PM}} = \frac{{BC}}{{MN}}\) nên cạnh AB tương ứng với cạnh NP, cạnh AC tương ứng với cạnh PM, cạnh BC tương ứng với cạnh MN.

Do các đỉnh tương ứng sẽ đối diện với các cạnh tương ứng nên các cặp đỉnh tương ứng của hai tam giác đồng dạng đã cho là: C và M, B và N, A và P.

Do đó, ∆ABC ∆PNM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a)

Xét tam giác ABC có:

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\,\,\,\,\,\,\left( {do\,\,\frac{4}{6} = \frac{6}{9} = \frac{2}{3}} \right)\)

Suy ra MN song song với BC (định lí Thalès đảo)

Do ∆AMN ∆ABC với tỉ số đồng dạng \(\frac{2}{3}\) (1).

b)

Tam giác APB và tam giác AMN có:

AP = AM (= 4 cm)

\(\widehat A\) chung

AB = AN (= 6 cm)

Do đó, ∆APB = ∆AMN (c.g.c). Suy ra ∆APB ∆AMN (2).

Từ (1) và (2) ta có: ∆APB ∆ABC.

Lời giải

Lời giải

Media VietJack

Vì ABCD là hình bình hành nên \(\widehat B = \widehat D\), AB = CD, BC = AD.

Do đó, ∆ABC = ∆CDA (c.g.c). Suy ra ∆ABC ∆CDA (1).

Tam giác ABC có E, F lần lượt là trung điểm của AB và AC nên EF là đường trung bình tam giác ABC. Do đó, EF // BC.

Tam giác ABC có:

EF // BC nên ∆AEF ∆ABC (2).

Từ (1) và (2) suy ra: ∆AEF ∆CDA.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP