Câu hỏi:
11/07/2024 4,898Câu nào sau đây là sai ?
A. Hai tam giác có các cặp cạnh tương ứng tỉ lệ thì có các cặp góc tương ứng bằng nhau.
B. Hai tam giác có hai cặp góc tương ứng bằng nhau thì có cặp cạnh tương ứng tỉ lệ.
C. Hai tam giác có một cặp góc tương ứng bằng nhau và hai cặp cạnh tương ứng tỉ lệ thì đồng dạng với nhau.
D. Hai tam giác cùng đồng dạng với một tam giác theo cùng một tỉ số đồng dạng thì bằng nhau.
Câu hỏi trong đề: Giải SBT Toán 8 KNTT Ôn tập chương IX có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: C
Đáp án C sai vì hai tam giác đồng dạng khi có hai cặp cạnh tương ứng tỉ lệ và một cặp góc tạo bởi hai cạnh tương ứng bằng nhau thì đồng dạng với nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a)
Tam giác FBD và tam giác CED cùng vuông tại D có:
\(\widehat F = \widehat C\,\,\,\,\,\left( { = 90^\circ - \widehat B} \right)\).
Do đó, ∆BDF ᔕ ∆EDC (góc nhọn).
b)
Tam giác ABC vuông tại A và tam giác DEC vuông tại D có:
\(\widehat C\) chung
Do đó, ∆ABC ᔕ ∆DEC (góc nhọn). Suy ra \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DC}}\).
Vì AD là phân giác của góc BAC trong tam giác ABC nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\).
Suy ra \(\frac{{AC}}{{DC}} = \frac{{AB}}{{BD}}\).
Do đó \(\frac{{AB}}{{DE}} = \frac{{AB}}{{BD}}\). Suy ra BD = DE.
Lời giải
Lời giải
a) Áp dụng định lí Pythagore vào tam giác ABC vuông tại A ta có:
BC2 = AB2 + AC2 = 32 + 42 = 25 nên BC = 5 cm.
Tam giác ABC vuông tại A và tam giác HAC vuông tại H có:
\(\widehat C\) chung
Do đó, ∆ABC ᔕ ∆HAC (góc nhọn).
Suy ra \(\frac{{AC}}{{HC}} = \frac{{BC}}{{AC}}\) nên \(CH = \frac{{C{A^2}}}{{CB}} = \frac{{{4^2}}}{5} = \frac{{16}}{5}\) (cm).
Do đó, BH = BC – CH = 5 – \(\frac{{16}}{5}\) = \(\frac{9}{5}\) (cm).
Vì ∆ABC ᔕ ∆HAC (cmt) nên \(\frac{{AB}}{{HA}} = \frac{{BC}}{{AC}}\)
Do đó, \[AH = \frac{{AB \cdot AC}}{{BC}} = \frac{{3 \cdot 4}}{5} = \frac{{12}}{5}\] (cm).
b)
Vì HM vuông góc AB, suy ra \(\widehat {HMA} = 90^\circ \).
HN vuông góc với AC, suy ra \(\widehat {HNA} = 90^\circ \).
Tứ giác ANHM có: \(\widehat {HMA} = \widehat {NAM} = \widehat {HNA} = 90^\circ \) nên tứ giác ANHM là hình chữ nhật.
Do đó, \(\widehat {NHM} = 90^\circ \).
Gọi D là giao điểm của hai đường chéo trong hình chữ nhật NHMA nên DH = DM. Do đó, tam giác DHM cân tại D.
Suy ra: \(\widehat {DHM} = \widehat {DMH}\)
Lại có: \(\widehat {DHM} = \widehat B\,\,\,\left( { = 90^\circ - \widehat {MHB}} \right)\) nên \(\widehat {DMH} = \widehat B\).
Xét tam giác HMN vuông tại H và tam giác ABC vuông tại A có:
\(\widehat {NMH} = \widehat B\) (do \(\widehat {DMH} = \widehat B\))
Do đó, ∆HMN ᔕ ∆ABC (góc nhọn).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án