Câu hỏi:
13/07/2024 12,363
Cho hình chóp S.ABCD. có đáy là hình thoi cạnh a, SA = , SA ^ AC, SA ^ BC, = 120°. Gọi M, N lần lượt là trung điểm của AD, BC. Tính góc giữa các cặp đường thẳng:
a) SD và BC.
b) MN và SC.
Cho hình chóp S.ABCD. có đáy là hình thoi cạnh a, SA = , SA ^ AC, SA ^ BC, = 120°. Gọi M, N lần lượt là trung điểm của AD, BC. Tính góc giữa các cặp đường thẳng:
a) SD và BC.
b) MN và SC.
Quảng cáo
Trả lời:
a) Ta có:
Þ SA ^ (ABCD) Û SA ^ AD.
Do BC // AD nên (BC, SD) = (AD, SD).
Do đó = 60°.
b) Do MN // CD nên (SD, MN) = (SD, CD) = .
Áp dụng định lí Pythagore, ta có:
Áp dụng định lí hàm cos trong ∆SCD, ta có:
Do đó (SD, MN) = ≈ 75,52°.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cho N là trung điểm của cạnh AC.
Þ MN là đường trung trực của ∆ABC.
Þ MN // AB Û (AB, DM) = (MN, DM) =
Lại có: ∆BCD và ∆ACD là các tam giác đều (theo giả thiết).
Giả sử ABCD là tứ diện đều cạnh a.
Þ DM = DN = ; MN = = .
Áp dụng định lý hàm cos trong ∆DMN, ta có:
Do đó (AB, DM) = ≈ 73,22°.
Lời giải
a) Ta có:
Từ giả thiết, ta có ∆SAB là tam giác đều.
b) Ta có:
Từ giả thiết, ta có ∆SBC là tam giác đều.
Do đó
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.