Câu hỏi:

13/07/2024 1,760

Cho tứ diện đều ABCD cạnh a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Chứng minh hai đường thẳng OA và CD vuông góc với nhau. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử điểm H là chân đường vuông góc hạ từ đỉnh A xuống mặt phẳng đáy.

Xét ∆AHB, ∆AHC và ∆AHD:

 AB=AC=AD=aCanh AH chungAHB^=AHC^=AHD^=90°

Þ ∆AHB, ∆AHC và ∆AHD là các tam giác bằng nhau (cạnh huyền – cạnh góc vuông).

Þ BH = CH = DH    Þ H là tâm đường tròn ngoại tiếp tam giác BCD.

Þ H º O Û AO là đường cao của tứ diện ABCD.

Þ OA ^ CD.

Vậy hai đường thẳng OA và CD vuông góc với nhau. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Ta có: SAACSABC

Þ SA ^ (ABCD) Û SA ^ AD.

Do BC // AD nên (BC, SD) = (AD, SD).

tanADS^=SAAD=a3a=3

Do đó BC, SD=ADS^  = 60°.

b) Do MN // CD nên (SD, MN) = (SD, CD) = SCD^ .

Áp dụng định lí Pythagore, ta có:

SD=SA2+AD2=a32+a2=2aSC=SA2+AC2=a32+a2=2a

Áp dụng định lí hàm cos trong ∆SCD, ta có:

cosSCD^=SC2+CD2SD22.SC.CD=(2a)2+a2(2a)22.2.a.a=14

Do đó (SD, MN) = SCD^   ≈ 75,52°.

Lời giải

Media VietJack

Cho N là trung điểm của cạnh AC.

Þ MN là đường trung trực của ABC.

Þ MN // AB Û (AB, DM) = (MN, DM) = DMN^

Lại có: ∆BCD và ∆ACD là các tam giác đều (theo giả thiết).

Giả sử ABCD là tứ diện đều cạnh a.

Þ DM = DN = a32 ; MN = AB2  a2 .

Áp dụng định lý hàm cos trong ∆DMN, ta có:

cosDMN^=DM2+MN2DN22.DM.MN=36

Do đó (AB, DM) = DMN^ 73,22°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP