Câu hỏi:
12/07/2024 3,111
b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
Quảng cáo
Trả lời:
b) Ta có y' = 0 ⇔ 3x2 – 6x = 0 ⇔ x = 0 hoặc x = 2.
Bảng biến thiên:

Do đó, hàm số đạt cực đại tại x = 0, giá trị cực đại là yCĐ = 2; hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là yCT = – 2.
Hai điểm cực trị của đồ thị hàm số là (0; 2) và (2; – 2).
Ta thấy . Vậy điểm I(1; 0) là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sau bài học này, ta khảo sát và vẽ đồ thị của hàm số C = C(v).
– Tập xác định: D = (0; 120].
– Sự biến thiên:
+ Chiều biến thiên:
Đạo hàm C'(v) = ;
C'(v) = 0 ⇔ v = – 80 (loại) hoặc v = 80.
Trên khoảng (0; 80), C'(v) < 0 nên hàm số nghịch biến trên khoảng này.
Trên khoảng (80; 120), C'(v) > 0 nên hàm số đồng biến trên khoảng này.
+ Cực trị: Hàm số đạt cực tiểu tại v = 80, CCT = C(80) = 400.
+ Giới hạn vô cực và tiệm cận: nên đường thẳng v = 0 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:

– Đồ thị:
Đồ thị hàm số có điểm cực tiểu (80; 400) và đi qua các điểm (40; 500), (100; 410), như hình dưới đây.

Lời giải

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.