Câu hỏi:

12/07/2024 652 Lưu

Để bày bàn ăn cho nhiều người, các nhà hàng thường sử dụng bàn xoay có dạng hình tròn và quay được quanh tâm của hình tròn. Đặt một chiếc cốc nhỏ ở vị trí điểm A trên bàn xoay có dạng hình tròn với tâm O sao cho điểm A khác điểm O. Khi quay bàn xoay thuận chiều quay của kim đồng hồ (H.9.46) thì chiếc cốc di chuyển đến một vị trí mới là điểm B.

Em hãy so sánh khoảng cách từ hai điểm A và B đến điểm O. Hai điểm A, B có cùng nằm trên một đường tròn tâm O hay không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi quay bàn xoay thì khoảng cách từ tâm O đến chiếc cốc không thay đổi nên OA = OB. Do đó khoảng cách từ hai điểm A và B đến điểm O bằng nhau.

Vì OA = OB nên hai điểm A, B cùng nằm trên đường tròn tâm O.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phép quay thuận chiều 90° với tâm O biến các điểm A, B, C, D thành các điểm tương ứng là B, C, D, A.

Phép quay này giữ nguyên hình vuông ABCD.

Lời giải

Vì ABCDEF là lục giác đều nên AB = BC = CD = DE = EF = FA.

Vì lục giác đều ABCDEF nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE = OF.

Xét ∆AOB và ∆BOC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆AOB = ∆BOC (c.c.c)

Tương tự, ta sẽ chứng minh được:

∆AOB = ∆BOC = ∆COD = ∆DOE = ∆EOF = ∆OFA.

Do đó:

Suy ra nên

Xét ∆OAB có OA = OB nên ∆OAB cân tại O, lại có nên ∆OAB là tam giác đều. Suy ra AB = OA = OB = 2 cm và

Tương tự, ta chứng minh được ∆OAF là tam giác đều nên

Khi đó hay

Do đó, vì ABCDEF là lục giác đều nên các góc bằng nhau và bằng 120°.

Vậy độ dài các cạnh của lục giác đều bằng 2 centimét và số đo các góc của lục giác đều bằng 120°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP