Câu hỏi:

12/07/2024 308 Lưu

Liệt kê năm phép quay giữ nguyên một ngũ giác đều nội tiếp một đường tròn tâm O.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử ABCDE là ngũ giác đều nội tiếp đường tròn (O) (hình vẽ).

Vì ngũ giác ABCDE nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE.

Vì ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA.

Xét ∆OAB và ∆OBC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆OAB = ∆OBC (c.c.c).

Chứng minh tương tự ta có

∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOA.

Suy ra

Do đó

Suy ra

Khi đó phép quay ngược chiều 72° tâm O giữ nguyên điểm O, biến điểm A thành điểm B thuộc đường tròn (O; OA) sao cho tia OA quay ngược chiều kim đồng hồ đến tia OB, điểm A tạo nên cung AB có số đo 72°.

Vậy mỗi phép quay ngược chiều 72° tâm O ở mỗi đỉnh A, B, C, D, E sẽ giữ nguyên ngũ giác đều nội tiếp một đường tròn tâm O.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phép quay thuận chiều 90° với tâm O biến các điểm A, B, C, D thành các điểm tương ứng là B, C, D, A.

Phép quay này giữ nguyên hình vuông ABCD.

Lời giải

Cách 1:

Giả sử ABCDEGHK là bát giác đều nội tiếp đường tròn (O).

Do đó AB = BC = CD = DE = EG = GH = HK và OA = OB = OC = OD = OE = OG = OH = OK.

Xét ∆OAB và ∆OBC có:

OA = OB, OB = OC, AB = BC

Do đó ∆OAB = ∆OBC (c.c.c).

Tương tự, ta sẽ chứng minh được:

∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOG = ∆GOH = ∆HOK = ∆KOA.

Suy ra các góc tương ứng bằng nhau:

Ta có:

Suy ra nên

Lại có (tổng ba góc của ∆OAB bằng 180°)

Suy ra

Vì ∆AOB = ∆OKA nên (hai góc tương ứng).

Suy ra

Do đó, vì ABCDEGHK là bát giác đều nên các góc bằng nhau và bằng 135°.

Cách 2:

Bát giác đều ABCDEGHK được chia thành ba tứ giác ABCD, ADEG và AGHG.

Ta thấy tổng số đo các góc của bát giác ABCDEGHK bằng tổng số đo các góc của ba tứ giác kể trên.

Mà mỗi tứ giác có tổng số đo các góc bằng 360°, do đó tổng số đo các góc của bát giác đều ABCDEGHK là: 3.360° = 1 080°.

Vì ABCDEGHK là bát giác đều nên 8 góc của bát giác bằng nhau và mỗi góc có số đo bằng

Vậy mỗi góc của bát giác đều có số đo bằng 135°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP