Câu hỏi:

22/08/2024 1,946

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) y = x3 – 6x2 + 9x;

b) y = x3 + 3x2 + 6x + 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) y = x3 – 6x2 + 9x

1. Tập xác định: D = ℝ.

2. Sự biến thiên

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty .\)

Ta có: y' = 3x2 – 12x + 9

           y' = 0 3x2 – 12x + 9 = 0 x = 1 hoặc x = 3.

Ta có bảng biến thiên như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 1)

Hàm số đồng biến trên các khoảng (−∞; 1) và (3; +∞).

Hàm số nghịch biến trên khoảng (1; 3).

Hàm số đạt cực đại tại x = 1 với y = 4.

Hàm số đạt cực tiểu tại x = 3 với yCT = 0.

3. Đồ thị hàm số

Đồ thị hàm số cắt trục tung tại điểm (0; 0).

Đồ thị hàm số cắt trục hoành tại điểm (0; 0) và (3; 0).

Đồ thị nhận điểm (2; 2) làm tâm đối xứng.

Ta có đồ thị hàm số như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 2)

b) y = x3 + 3x2 + 6x + 4

1. Tập xác định: D = ℝ.

2. Sự biến thiên

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty .\)

Ta có: y' = 3x2 + 6x + 6 = 3(x2 + 2x + 1) + 3 = 3(x + 1)2 + 3 > 0 với mọi x.

Ta có bảng biến thiên như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 3)

Hàm số đồng biến trên ℝ.

Hàm số không có cực trị.

3. Đồ thị hàm số

Đồ thị hàm số cắt trục tung tại điểm (0; 4).

Đồ thị hàm số cắt trục hoành tại điểm (−1; 0).

Đồ thị hàm số có tâm đối xứng là điểm (−1; 0).

Đồ thị hàm số như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 4)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giả sử chi phí để sản xuất x sản phẩm của một nhà máy được cho bởi C(x) = 0,2x2 + 10x + 5(triệu đồng). Khi đó, chi phí trung bình để sản xuất một đơn vị sản phẩm là \[f\left( x \right) = \frac{{C(x)}}{x}.\]

a) Khảo sát sự biến thiên của hàm số y = f(x).

b) Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?

Xem đáp án » 22/08/2024 15,121

Câu 2:

Một quần thể cá được nuôi trong một hồ nhân tạo lúc ban đầu ó 80 000 con. Sau t năm, số lượng quần thể cá nói trên được xác định bởi

N(t) = \(\frac{{20\left( {4 + 3t} \right)}}{{1 + 0,05t}}\) (nghìn con).

a) Khảo sát sự biến thiên của hàm số y = N(t).

b) Số lượng tối đa có thể có của quần thể cá là bao nhiêu?

Xem đáp án » 22/08/2024 11,374

Câu 3:

Gia tốc a(t) của một vật chuyển động, t tính theo giây, từ giây thứ nhất đến giây thứ 5 là một hàm liên tục có đồ thị như hình sau:

Gia tốc a(t) của một vật chuyển động, t tính theo giây, từ giây thứ nhất đến giây thứ 5 là một hàm liên tục có đồ thị như hình sau:   a) Lập bảng biến thiên của hàm vận tốc y = v(t) của vật, với t ∈ [1; 5]. b) Tại thời điểm nào vật chuyển động với vận tốc lớn nhất? (ảnh 1)

a) Lập bảng biến thiên của hàm vận tốc y = v(t) của vật, với t ∈ [1; 5].

b) Tại thời điểm nào vật chuyển động với vận tốc lớn nhất?

Xem đáp án » 22/08/2024 8,044

Câu 4:

Cho điểm A(3;2 ) trên mặt phẳng tọa độ. Một đường thẳng đi qua A cắt trục hoành tại B, cắt trục tung tại C tạo thành một tam giác OBC nằm trong góc phần tư thứ nhấ, với O là gốc tọa độ.

Cho điểm A(3;2 ) trên mặt phẳng tọa độ. Một đường thẳng đi qua A cắt trục hoành tại B, cắt trục tung tại C tạo thành một tam giác OBC nằm  (ảnh 1)

a) Biết hoành độ điểm B là x = t với t > 3. Tính diện tích tam giác OBC theo t. Kí hiệu diện tích này là S(t).

b) Khảo sát sự biến thiên của hàm số S(t).

c) Tìm vị trí điểm B để diện tích tam giác OBC là nhỏ nhất.

Xem đáp án » 22/08/2024 5,621

Câu 5:

Cho hàm số y = f(x) có đạo hàm f'(x) xác định trên ℝ và f'(x) có đồ thị như hình vẽ sau:

Cho hàm số y = f(x) có đạo hàm f'(x) xác định trên ℝ và f'(x) có đồ thị như hình vẽ sau:  Tìm các khoảng đồng biến, khoảng nghịch biến và các điểm cực trị của hàm số y = f(x). (ảnh 1)

Tìm các khoảng đồng biến, khoảng nghịch biến và các điểm cực trị của hàm số y = f(x).

Xem đáp án » 22/08/2024 4,806

Câu 6:

Một mẫu giấy in hình chữ nhật được thiết kế với vùng in có diện tích 300 cm2, lề trái và lề phải là 2 cm, lề trên và lề dưới là 3 cm. Gọi x (cm) là chiều rộng của tờ giấy.

a) Tính diện tích của tờ giấy theo x.

b) Kí hiệu diện tích tờ giấy là S(x). Khảo sát sự biến thiên của hàm số y = S(x).

c) Tìm kích thước của tờ giấy sao cho nguyên liệu giấy được sử dụng là ít nhất.

Xem đáp án » 22/08/2024 4,310

Câu 7:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) \(y = \frac{{{x^2} - 4x + 8}}{{x - 2}};\)

b) \(y = \frac{{2{x^2} + 3x - 5}}{{x + 1}}.\)

Xem đáp án » 22/08/2024 2,794
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay