Câu hỏi:

22/08/2024 2,232

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) y = x3 – 6x2 + 9x;

b) y = x3 + 3x2 + 6x + 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) y = x3 – 6x2 + 9x

1. Tập xác định: D = ℝ.

2. Sự biến thiên

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty .\)

Ta có: y' = 3x2 – 12x + 9

           y' = 0 3x2 – 12x + 9 = 0 x = 1 hoặc x = 3.

Ta có bảng biến thiên như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 1)

Hàm số đồng biến trên các khoảng (−∞; 1) và (3; +∞).

Hàm số nghịch biến trên khoảng (1; 3).

Hàm số đạt cực đại tại x = 1 với y = 4.

Hàm số đạt cực tiểu tại x = 3 với yCT = 0.

3. Đồ thị hàm số

Đồ thị hàm số cắt trục tung tại điểm (0; 0).

Đồ thị hàm số cắt trục hoành tại điểm (0; 0) và (3; 0).

Đồ thị nhận điểm (2; 2) làm tâm đối xứng.

Ta có đồ thị hàm số như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 2)

b) y = x3 + 3x2 + 6x + 4

1. Tập xác định: D = ℝ.

2. Sự biến thiên

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty .\)

Ta có: y' = 3x2 + 6x + 6 = 3(x2 + 2x + 1) + 3 = 3(x + 1)2 + 3 > 0 với mọi x.

Ta có bảng biến thiên như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 3)

Hàm số đồng biến trên ℝ.

Hàm số không có cực trị.

3. Đồ thị hàm số

Đồ thị hàm số cắt trục tung tại điểm (0; 4).

Đồ thị hàm số cắt trục hoành tại điểm (−1; 0).

Đồ thị hàm số có tâm đối xứng là điểm (−1; 0).

Đồ thị hàm số như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) y = x^3 – 6x^2 + 9x; b) y = x^3 + 3x^2 + 6x + 4. (ảnh 4)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f\left( x \right) = \frac{{C(x)}}{x}\] = 0,2x + 10 + \(\frac{5}{x}\) với x ≥ 1.

                f'(x) = 0,2 – \(\frac{5}{{{x^2}}}\)

                f'(x) = 0 0,2 – \(\frac{5}{{{x^2}}}\) = 0 x = 5 (do x ≥ 1).

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).

Ta có bảng biến thiên như sau:

Giả sử chi phí để sản xuất x sản phẩm của một nhà máy được cho bởi C(x) = 0,2x^2 + 10x + 5(triệu đồng). Khi đó, chi phí trung bình để sản xuất một đơn vị  (ảnh 1)

Hàm số đồng biến trên khoảng (5; +∞), nghịch biến trên khoảng (1; 5).

Hàm số đạt cực đại tại x = 5 với fCT = 12.

Lời giải

a) Khảo sát sự biến thiên của hàm số y = N(t).

1. Tập xác định: [0; +∞).

2. Sự biến thiên

Ta có: N(t) = \(\frac{{20\left( {4 + 3t} \right)}}{{1 + 0,05t}}\)

           N'(t) = \(\frac{{56}}{{{{\left( {1 + 0,05t} \right)}^2}}} > 0\) với mọi t ≥ 0.

Hàm số đồng biến trên khoảng (0; +∞).

Hàm số không có cực trị.

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{t \to + \infty } N(t)\) = 1200.

Bảng biến thiên:

Một quần thể cá được nuôi trong một hồ nhân tạo lúc ban đầu ó 80 000 con. Sau t năm, số lượng quần thể cá nói trên được xác định bởi  (ảnh 1)

b) Số lượng tối đa có thể có của quần thể cá là 1 200 000 con.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP