Câu hỏi:

22/08/2024 2,290

Cho hàm số \(y = \frac{{\left( {m + 1} \right)x - 2m + 1}}{{x - 1}}\).

a) Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2).

b) Khảo sát và vẽ đồ thị (H) của hàm số y = f(x) với m tìm được ở câu a.

c) Từ đồ thị (H) của hàm số y = f(x) ở câu b, vẽ đồ thị của hàm số y = \(\left| {f(x)} \right|\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {m + 1} \right)x - 2m + 1}}{{x - 1}} = m + 1\);

               \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } y\frac{{\left( {m + 1} \right)x - 2m + 1}}{{x - 1}} = m + 1\).

Vậy tiệm cận ngang là đường thẳng y = m + 1.

Để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2) thì m + 1 = 2 hay m = 1.

Vậy m = 1.

b) Với m = 1, hàm số trở thành \(y = \frac{{2x - 1}}{{x - 1}}\).

Tập xác định: D = ℝ\{1}.

Ta có: \(\frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\) < 0, với mọi x ≠ 1.

Suy ra hàm số nghịch biến trên các khoảng (−∞; 1) và (1; +∞).

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x - 1}} = 2\),

                \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x - 1}} = 2\).

Do đó, đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.

                 \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 1}}{{x - 1}} = + \infty \),

                 \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 1}}{{x - 1}} = - \infty \).

Do đó, đồ thị nhận đường thẳng x = 1 làm tiệm cận đứng.

Bảng biến thiên của hàm số được cho như sau:

Cho hàm số y = (( m + 1)x - 2m + 1)/(x - 1). a) Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2). b) Khảo sát và vẽ đồ thị (H) của hàm số y = f(x) với m tìm được ở câu a. c) Từ đồ thị (H) của hàm số y = f(x) ở câu b, vẽ đồ thị của hàm số y = \(\left| {f(x)} \right|\). (ảnh 1)

Đồ thị hàm số như sau:

Cho hàm số y = (( m + 1)x - 2m + 1)/(x - 1). a) Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2). b) Khảo sát và vẽ đồ thị (H) của hàm số y = f(x) với m tìm được ở câu a. c) Từ đồ thị (H) của hàm số y = f(x) ở câu b, vẽ đồ thị của hàm số y = \(\left| {f(x)} \right|\). (ảnh 2)

c) Ta có:

\(y = \left| {f(x)} \right| = \left\{ \begin{array}{l}f(x){\rm{ khi f(x) }} \ge {\rm{ 0}}\\ - f(x){\rm{ khi f(x) < 0}}{\rm{.}}\end{array} \right.\)

Như vậy, để vẽ đồ thị hàm số y = \(\left| {f(x)} \right|\) ta làm như sau: Giữ nguyên phần đồ thị hàm số

y = f(x) ở phía trên trục Ox; lấy đối xứng qua trục Ox phần đồ thị hàm số y = f(x) ở phía trên trục Ox. Đồ thị y = \(\left| {f(x)} \right|\) là đường liền nét trong hình vẽ dưới đây:

Cho hàm số y = (( m + 1)x - 2m + 1)/(x - 1). a) Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2). b) Khảo sát và vẽ đồ thị (H) của hàm số y = f(x) với m tìm được ở câu a. c) Từ đồ thị (H) của hàm số y = f(x) ở câu b, vẽ đồ thị của hàm số y = \(\left| {f(x)} \right|\). (ảnh 3)

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có:

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. (ảnh 2)

Kẻ AH là chiều cao của tam giác ABC

Lúc này, AH = \(\sqrt {A{C^2} - H{C^2}} \) = \(\sqrt {25 - {{\left( {\frac{x}{2}} \right)}^2}} \) = \(\frac{1}{2}\sqrt {100 - {x^2}} \).

Diện tích tam giác ABC là:

S∆ABC = \(\frac{1}{2}\)BC. AH = \(\frac{1}{2}\)x\(\frac{1}{2}\sqrt {100 - {x^2}} \) = \(\frac{1}{4}x\sqrt {100 - {x^2}} \).

Thể tích khối lăng trụ là:

V = S∆ABC. AA' = 5x\(\sqrt {100 - {x^2}} \) (m3) với 0 < x < 10.

b) Xét hàm số thể tích f(x) = 5x\(\sqrt {100 - {x^2}} \) trên khoảng (0; 10).

Ta có: f'(x) = 5\(\sqrt {100 - {x^2}} \) + 5x.\(\frac{{ - 2x}}{{2\sqrt {100 - {x^2}} }}\) = \(\frac{{500 - 10{x^2}}}{{\sqrt {100 - {x^2}} }}\);

           f'(x) = 0 x = \(5\sqrt 2 \) (x > 0).

Bảng biến thiên:

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. (ảnh 3)

Vậy hình lăng trụ có thể tích lớn nhất khi x = \(5\sqrt 2 \) (m).

Vậy \(\mathop {\max }\limits_{x \in (0;10)} V = V\left( {5\sqrt 2 } \right) = 250\)(m3).

Lời giải

a) Tập xác định: D = ℝ.

Ta có: y' = 3x2 – 6x2

           y' = 0 3x2 – 6x2 = 0 x = 0 hoặc x = 2.

Hàm số đồng biến trên khoảng (−∞; 0) và (2; +∞).

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại điểm x = 0 và y= y(0) = 2.

Hàm số đạt cực tiểu tại điểm x = 2 và yCT = y(2) = −2.

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)

Ta có bảng biến thiên như sau:

Cho hàm số y = x^3 – 3x^2 + 2 có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại (ảnh 1)

Đồ thị hàm số đi qua các điểm: (3; 2); (2; −2); (−1; −2); (0; 2).

Đồ thị hàm số có tâm đối xứng là điểm (1; 0).

Đồ thị hàm số như sau:

Cho hàm số y = x^3 – 3x^2 + 2 có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại (ảnh 2)

b) Tâm đối xứng của đồ thị hàm số là điểm I(1; 0).

Ta có: y'(1) = −3.

Vậy phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó là:

y =  y'(1)(x – 1) + y(1)

   = −3(x – 1) + 0

   = −3x + 3 (∆).

Ta có: y' = 3x2 – 6x = 3(x2 – 2x + 1) – 3 = 3(x – 1)2 – 3 ≥ −3 với mọi x.

Vậy ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Ta có: x3 – 3x2 – m = 0 x3 – 3x2 + 2 = m + 2.

Vậy phương trình x3 – 3x2 – m = 0 là phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng y = m + 2. Suy ra, phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi đường thẳng y = m + 2 cắt đồ thị (C) tại 3 điểm phân biệt, điều này tương đương với −2 < m + 2 < 2 −4 < m < 0.            

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay