Câu hỏi:

22/08/2024 2,188

Cho hàm số \(y = \frac{{m{x^2} + \left( {2m - 1} \right)x - 1}}{{x + 2}}\) với m là tham số.

a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0.

b) Khảo sát và vẽ đồ thị (H) của hàm số đã cho với m = 1.

c) Giả sử ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại điểm M (H) bất kì. Chứng minh rằng nếu ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại A và B thì M luôn là trung điểm của đoạn AB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tập xác định: D = ℝ\{−2}.

Ta có: \(y' = \frac{{m{x^2} + 4mx + 4m - 1}}{{{{\left( {x + 2} \right)}^2}}}\)

           y' = 0 mx2 + 4mx + 4m – 1 = 0

Xét ∆' = 4m2 – m(4m – 1) = 4m2 – 4m2 + m = m.

Với m > 0 thì ta được y' = 0 là phương trình bâc hai có hai nghiệm phân biệt x1, x2.

Bảng biến thiên của hàm số như sau:

Cho hàm số y = (mx^2} + ( 2m - 1)x - 1)/(x + 2) với m là tham số. a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0. b)  (ảnh 1)

Vậy hàm số luôn có cực đại, cực tiểu với mọi m > 0.

b) Với m = 1, ta có: y = \(\frac{{{x^2} + x - 1}}{{x + 2}}\)

Tập xác định: D = ℝ\{−2}.

Ta có: \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\)

           y' = 0 x2 + 4x + 3 = 0 x = −3 hoặc x = −1.

Ta có:   \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \) .

             \(\mathop {\lim }\limits_{x \to - {2^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to - {2^ - }} y = - \infty \).

Do đó, đồ thị hàm số nhận đường thẳng x = −2 làm tiệm cận đứng.

Ta có: y = \(\frac{{{x^2} + x - 1}}{{x + 2}}\)= x – 1 + \(\frac{1}{{x + 2}}\).

Suy ra \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x + 2}} = 0\)

Do đó, đường thẳng y = x – 1 là tiệm cận xiên của đồ thị hàm số.

Ta có bảng biến thiên như sau:

Cho hàm số y = (mx^2} + ( 2m - 1)x - 1)/(x + 2) với m là tham số. a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0. b)  (ảnh 2)

Đồ thị của hàm số như sau:

Cho hàm số y = (mx^2} + ( 2m - 1)x - 1)/(x + 2) với m là tham số. a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0. b)  (ảnh 3)

c) Lấy M\(\left( {t;\frac{{{t^2} + t - 1}}{{t + 2}}} \right)\) (H) bất kì.

Phương trình tiếp tuyến của đồ thị (H) tại M là:

d: y = y'(t)(x – t) + y(t)

    y = \(\frac{{{t^2} + 4t + 3}}{{{{\left( {t + 2} \right)}^2}}}\left( {x - t} \right) + \frac{{{t^2} + t - 1}}{{t + 2}}\).

Tiếp tuyến d cắt tiệm cận đứng tại điểm A\(\left( { - 2; - \frac{{3t + 4}}{{t + 2}}} \right)\).

Tiếp tuyến d cắt tiệm cận xiên tại điểm B(2t + 2; 2t + 1).

Ta có: \(\left\{ \begin{array}{l}{x_A} + {x_B} = 2t = 2{x_M}\\{y_A} + {y_B} = (2t + 1) - \frac{{3t + 4}}{{t + 2}} = \frac{{2{t^2} + 2t - 2}}{{t + 2}} = 2{y_M}\end{array} \right.\).

Vậy M là trung điểm của đoạn AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có:

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. (ảnh 2)

Kẻ AH là chiều cao của tam giác ABC

Lúc này, AH = \(\sqrt {A{C^2} - H{C^2}} \) = \(\sqrt {25 - {{\left( {\frac{x}{2}} \right)}^2}} \) = \(\frac{1}{2}\sqrt {100 - {x^2}} \).

Diện tích tam giác ABC là:

S∆ABC = \(\frac{1}{2}\)BC. AH = \(\frac{1}{2}\)x\(\frac{1}{2}\sqrt {100 - {x^2}} \) = \(\frac{1}{4}x\sqrt {100 - {x^2}} \).

Thể tích khối lăng trụ là:

V = S∆ABC. AA' = 5x\(\sqrt {100 - {x^2}} \) (m3) với 0 < x < 10.

b) Xét hàm số thể tích f(x) = 5x\(\sqrt {100 - {x^2}} \) trên khoảng (0; 10).

Ta có: f'(x) = 5\(\sqrt {100 - {x^2}} \) + 5x.\(\frac{{ - 2x}}{{2\sqrt {100 - {x^2}} }}\) = \(\frac{{500 - 10{x^2}}}{{\sqrt {100 - {x^2}} }}\);

           f'(x) = 0 x = \(5\sqrt 2 \) (x > 0).

Bảng biến thiên:

Một hành lang giữa hai nhà có hình dạng một lăng trụ đứng (xem hình bên). Hai mặt bên ABB'A' và ACC'A' là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. (ảnh 3)

Vậy hình lăng trụ có thể tích lớn nhất khi x = \(5\sqrt 2 \) (m).

Vậy \(\mathop {\max }\limits_{x \in (0;10)} V = V\left( {5\sqrt 2 } \right) = 250\)(m3).

Lời giải

a) Tập xác định: D = ℝ.

Ta có: y' = 3x2 – 6x2

           y' = 0 3x2 – 6x2 = 0 x = 0 hoặc x = 2.

Hàm số đồng biến trên khoảng (−∞; 0) và (2; +∞).

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại điểm x = 0 và y= y(0) = 2.

Hàm số đạt cực tiểu tại điểm x = 2 và yCT = y(2) = −2.

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)

Ta có bảng biến thiên như sau:

Cho hàm số y = x^3 – 3x^2 + 2 có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại (ảnh 1)

Đồ thị hàm số đi qua các điểm: (3; 2); (2; −2); (−1; −2); (0; 2).

Đồ thị hàm số có tâm đối xứng là điểm (1; 0).

Đồ thị hàm số như sau:

Cho hàm số y = x^3 – 3x^2 + 2 có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại (ảnh 2)

b) Tâm đối xứng của đồ thị hàm số là điểm I(1; 0).

Ta có: y'(1) = −3.

Vậy phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó là:

y =  y'(1)(x – 1) + y(1)

   = −3(x – 1) + 0

   = −3x + 3 (∆).

Ta có: y' = 3x2 – 6x = 3(x2 – 2x + 1) – 3 = 3(x – 1)2 – 3 ≥ −3 với mọi x.

Vậy ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Ta có: x3 – 3x2 – m = 0 x3 – 3x2 + 2 = m + 2.

Vậy phương trình x3 – 3x2 – m = 0 là phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng y = m + 2. Suy ra, phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi đường thẳng y = m + 2 cắt đồ thị (C) tại 3 điểm phân biệt, điều này tương đương với −2 < m + 2 < 2 −4 < m < 0.            

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP