Câu hỏi:
24/08/2024 511Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức d = 0,05v2 + 1,1v để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Bài tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
Thay d = 300 vào công thức d = 0,05v2 + 1,1v, ta có tốc độ v của ô tô là nghiệm của phương trình: 300 = 0,05v2 + 1,1v.
Giải phương trình này ta được v ≈ 67,24 (thỏa mãn) hoặc v ≈ −89,24 (loại).
Suy ra tốc độ của ô tô xấp xỉ 67,24 dặm/giờ.
Vậy ô tô không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x (%) là lãi suất năm của hình thức gửi tiết kiệm này. Điều kiện: x > 0.
Sau một năm, số tiền cả vốn lẫn lãi của bác Hương là:
\(100 + 100.\frac{x}{{100}} = 100 + x\) (triệu đồng).
Tổng số tiền bác Hương gửi ở năm thứ hai là: 100 + x + 50 = 150 + x (triệu đồng).
Sau hai năm, số tiền cả vốn lẫn lãi bác Hương nhận được là:
\(150 + x + \left( {150 + x} \right).\frac{x}{{100}}\) (triệu đồng).
Do sau hai năm, bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng nên ta có phương trình:
\(150 + x + \left( {150 + x} \right).\frac{x}{{100}} = 176,\) hay \(\frac{{{x^2}}}{{100}} + \frac{5}{2}x - 26 = 0.\)
Giải phương trình này ta được: x = 10 (thỏa mãn điều kiện) hoặc x = −260 (loại).
Vậy lãi suất năm của hình thức gửi tiết kiệm này là 10%.
Lời giải
Đáp án đúng là: D
Ta có:
• \(\frac{1}{2}{.1^2} = \frac{1}{2} \ne 2\) nên điểm (1; 2) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}{.2^2} = 2 \ne 1\) nên điểm (2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}.{\left( { - 2} \right)^2} = 2 \ne 1\) nên điểm (−2; 1) không thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
• \(\frac{1}{2}.{\left( { - 1} \right)^2} = \frac{1}{2}\) nên điểm \(\left( { - 1;\frac{1}{2}} \right)\) thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}.\)
Vậy điểm thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) là \(\left( { - 1;\frac{1}{2}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Chuyên đề 8: Hình học (có đáp án)