Câu hỏi:
17/09/2024 296
Cho góc xOy với đường phân giác Ot và điểm A trên cạnh Ox, điểm B trên cạnh Oy sao cho OA = OB. Đường thẳng qua A và vuông góc với Ox cắt Ot tại M. Chứng minh rằng OA và OB là hai tiếp tuyến cắt nhau của đường tròn (M; MA).
Cho góc xOy với đường phân giác Ot và điểm A trên cạnh Ox, điểm B trên cạnh Oy sao cho OA = OB. Đường thẳng qua A và vuông góc với Ox cắt Ot tại M. Chứng minh rằng OA và OB là hai tiếp tuyến cắt nhau của đường tròn (M; MA).
Quảng cáo
Trả lời:
(H.5.30)

Theo đề bài, ta có Ox ⊥ MA tại A nên Ox là tiếp tuyến của (M) tại A.
Do Ot là tia phân giác của góc xOy và M ∈ Ot nên MA = MB.
Hai tam giác OMA và OMB có:
Cạnh OM chung; MA = MB; \(\widehat {AOM} = \widehat {BOM}.\)
Do đó ∆OMA = ∆OMB (c.g.c).
Suy ra \(\widehat {MBO} = \widehat {MAO} = 90^\circ ,\) tức là Oy ⊥ MB tại B.
Do vậy OB là tiếp tuyến của (M) tại B (theo dấu hiệu nhận biết tiếp tuyến).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(H.5.32)

a) Xét hai tiếp tuyến AB, AC của (O) cắt nhau tại A, ta có: AB = AC suy ra A thuộc đường trung trực của đoạn thẳng BC.
Mặt khác, OB = OC (cùng bằng bán kính).
Do đó O thuộc đường trung trực của đoạn thẳng BC.
Vậy AO là đường trung trực của BC.
b) Xét tam giác CBD có BO là đường trung tuyến, \(BO = \frac{1}{2}CD.\)
Suy ra ∆CBD là tam giác vuông, hay BC ⊥ BD.
Mặt khác, AO ⊥ BC (do AO là đường trung trực của BC).
Từ đó suy ra BD // AO.
c) Theo giả thiết, ta có OM ⊥ OB, suy ra \(\widehat {MOA} + \widehat {AOB} = 90^\circ .\) (1)
Ta có \(\widehat {MAO} = \widehat {BAO}\) (do A là giao điểm của hai tiếp tuyến của (O)).
Vì AB là tiếp tuyến của (O) nên OB ⊥ AB. Do đó \[\widehat {BAO} + \widehat {AOB} = 90^\circ .\] (2)
Từ (1) và (2) suy ra \[\widehat {MOA} = \widehat {MAO},\] do đó ∆AMO là tam giác cân.
Suy ra MO = MA (điều phải chứng minh).
Lời giải
(H.5.31)

a) Xét hai tiếp tuyến của (O) cắt nhau tại E ta có EA = EM. Tương tự, có FB = FM.
Chu vi của tam giác SEF là
\({P_{SEF}} = SE + EF + SF = SE + \left( {EM + MF} \right) + SF\)
\( = SE + EA + FB + SF = \left( {SE + EA} \right) + \left( {FB + SF} \right)\)
= SA + SB (điều phải chứng minh).
b) Giả sử M trùng với giao điểm của SO và (O).
Xét hai tiếp tuyến SA, SB của (O) cắt nhau tại S, ta có: SA = SB và SO là tia phân giác của \(\widehat {ASB}.\)
Tam giác SAB cân tại S (do SA = SB) có SO là đường phân giác nên đồng thời đường trung trực, tức là đoạn thẳng EF là tiếp tuyến của (O) tại M nên OM ⊥ EF, do đó SO ⊥ EF.
Từ đó suy ra AB // EF (cùng vuông góc với SO).
Tam giác SAB có AB // EF nên \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\) mà SA = SB, do đó SE = SF (điều phải chứng minh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.