Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
46 lượt thi câu hỏi
598 lượt thi
Thi ngay
86 lượt thi
58 lượt thi
415 lượt thi
47 lượt thi
83 lượt thi
250 lượt thi
81 lượt thi
72 lượt thi
Câu 1:
Chọn phương án đúng.
Cho đường thẳng a và một điểm O cách a một khoảng bằng 6 cm. Khẳng định nào sau đây là đúng về vị trí tương đối của a và đường tròn (O; 9 cm)?
A. Đường thẳng a cắt đường tròn (O) tại hai điểm.
B. Đường thẳng a tiếp xúc với đường tròn (O).
C. Đường thẳng a và đường tròn (O) không có điểm chung.
D. Đường thẳng a và đường tròn (O) có duy nhất điểm chung.
Cho một điểm M nằm ngoài đường tròn (I; 6 cm), vẽ tiếp tuyến MB đến đường tròn đó (B là tiếp điểm). Nếu MI = 10 cm thì độ dài MB bằng
A. 6 cm.
B. 8 cm.
C. 7 cm.
D. 10 cm.
Câu 2:
Cho đường thẳng a và một điểm O cách a là 3 cm. Vẽ đường tròn (O; 5 cm). Gọi B, C là các giao điểm của đường thẳng a và (O). Diện tích của tam giác OBC bằng
A. 10 cm2.
B. 6 cm2.
C. 24 cm2.
D. 12 cm2.
Câu 3:
Cho đường tròn (O) và điểm M nằm ngoài đường tròn, vẽ hai tiếp tuyến MA và MB của đường tròn (O). Biết rằng \(\widehat {AMB} = 35^\circ .\) Số đo của cung nhỏ AB là
A. 145°.
B. 215°.
C. 125°.
D. 235°.
Câu 4:
Bạn Thanh cắt 4 hình tròn bằng giấy có bán kính lần lượt là 4 cm, 6 cm, 7 cm và 8 cm để dán trang trí trên một mảnh giấy, trên đó có vẽ trước hai đường thẳng a và b. Biết rằng a và b là hai đường thẳng song song với nhau và cách nhau một khoảng 6 cm (nghĩa là mọi điểm trên đường thẳng b đều cách a một khoảng 6 cm). Hỏi nếu bạn Thanh dán sao cho tâm của cả 4 hình tròn đều nằm trên đường thẳng b thì hình tròn nào sẽ che khuất một phần của đường thẳng a, hình tròn nào sẽ không che khuất một phần của đường thẳng a?
Câu 5:
Cho đường tròn (O) đi qua ba đỉnh A, B và C của một tam giác cân tại A. Chứng minh rằng đường thẳng đi qua A và song song với BC là một tiếp tuyến của (O).
Câu 6:
Cho góc xOy với đường phân giác Ot và điểm A trên cạnh Ox, điểm B trên cạnh Oy sao cho OA = OB. Đường thẳng qua A và vuông góc với Ox cắt Ot tại M. Chứng minh rằng OA và OB là hai tiếp tuyến cắt nhau của đường tròn (M; MA).
Câu 7:
Cho SA và SB là hai tiếp tuyến cắt nhau của đường tròn (O) (A và B là hai tiếp điểm). Gọi M là một điểm tùy ý trên cung nhỏ AB. Tiếp tuyến của (O) tại M cắt SA tại E và cắt SB tại F.
a) Chứng minh rằng chu vi của tam giác SEF = SA + SB.
b) Giả sử M là giao điểm của đoạn SO với đường tròn (O). Chứng minh rằng SE = SF.
Câu 8:
Cho đường tròn tâm O, bán kính R. Từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC với đường tròn tâm O; B, C là các tiếp điểm.
a) Chứng minh AO là đường trung trực của BC.
b) Kẻ đường kính CD của (O). Chứng minh BD song song với AO.
c) Kẻ OM vuông góc với OB (M thuộc AC). Chứng minh MO = MA.
9 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com