Chọn phương án đúng.
Cho đường tròn (O) và điểm M nằm ngoài đường tròn, vẽ hai tiếp tuyến MA và MB của đường tròn (O). Biết rằng \(\widehat {AMB} = 35^\circ .\) Số đo của cung nhỏ AB là
A. 145°.
B. 215°.
C. 125°.
D. 235°.
Chọn phương án đúng.
Cho đường tròn (O) và điểm M nằm ngoài đường tròn, vẽ hai tiếp tuyến MA và MB của đường tròn (O). Biết rằng \(\widehat {AMB} = 35^\circ .\) Số đo của cung nhỏ AB là
A. 145°.
B. 215°.
C. 125°.
D. 235°.
Quảng cáo
Trả lời:
Đáp án đúng là: A

Xét đường tròn (O) có MA và MB là tiếp tuyến nên \(\widehat {OAM} = \widehat {OBM} = 90^\circ .\)
Xét tứ giác OAMB có: \(\widehat O + \widehat A + \widehat B + \widehat M = 360^\circ ,\) hay \(\widehat O + 90^\circ + 90^\circ + 35^\circ = 360^\circ .\)
Do đó \(\widehat O = 145^\circ .\)
Vậy số đo cung nhỏ AB bằng góc ở tâm \(\widehat {AOB}\) và bằng 145°.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(H.5.32)

a) Xét hai tiếp tuyến AB, AC của (O) cắt nhau tại A, ta có: AB = AC suy ra A thuộc đường trung trực của đoạn thẳng BC.
Mặt khác, OB = OC (cùng bằng bán kính).
Do đó O thuộc đường trung trực của đoạn thẳng BC.
Vậy AO là đường trung trực của BC.
b) Xét tam giác CBD có BO là đường trung tuyến, \(BO = \frac{1}{2}CD.\)
Suy ra ∆CBD là tam giác vuông, hay BC ⊥ BD.
Mặt khác, AO ⊥ BC (do AO là đường trung trực của BC).
Từ đó suy ra BD // AO.
c) Theo giả thiết, ta có OM ⊥ OB, suy ra \(\widehat {MOA} + \widehat {AOB} = 90^\circ .\) (1)
Ta có \(\widehat {MAO} = \widehat {BAO}\) (do A là giao điểm của hai tiếp tuyến của (O)).
Vì AB là tiếp tuyến của (O) nên OB ⊥ AB. Do đó \[\widehat {BAO} + \widehat {AOB} = 90^\circ .\] (2)
Từ (1) và (2) suy ra \[\widehat {MOA} = \widehat {MAO},\] do đó ∆AMO là tam giác cân.
Suy ra MO = MA (điều phải chứng minh).
Lời giải
(H.5.31)

a) Xét hai tiếp tuyến của (O) cắt nhau tại E ta có EA = EM. Tương tự, có FB = FM.
Chu vi của tam giác SEF là
\({P_{SEF}} = SE + EF + SF = SE + \left( {EM + MF} \right) + SF\)
\( = SE + EA + FB + SF = \left( {SE + EA} \right) + \left( {FB + SF} \right)\)
= SA + SB (điều phải chứng minh).
b) Giả sử M trùng với giao điểm của SO và (O).
Xét hai tiếp tuyến SA, SB của (O) cắt nhau tại S, ta có: SA = SB và SO là tia phân giác của \(\widehat {ASB}.\)
Tam giác SAB cân tại S (do SA = SB) có SO là đường phân giác nên đồng thời đường trung trực, tức là đoạn thẳng EF là tiếp tuyến của (O) tại M nên OM ⊥ EF, do đó SO ⊥ EF.
Từ đó suy ra AB // EF (cùng vuông góc với SO).
Tam giác SAB có AB // EF nên \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\) mà SA = SB, do đó SE = SF (điều phải chứng minh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.