Câu hỏi:
13/10/2024 343Cho phương trình chuyển động của một chất điểm s(t) = t3 – 6t2 + 9t, với t (giây), s (mét). Tại thời điểm nào của t thì chất điểm đứng yên?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Có v'(t) = 3t2 – 12t + 9.
Chất điểm đứng yên khi v'(t) = 0 3t2 – 12t + 9 = 0 t = 1 hoặc t = 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếc. Một cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần. Gọi p (triệu đồng) là giá của mỗi ti vi, x là số ti vi. Khi đó hàm cầu là:
Câu 2:
Giả sử một hạt chuyển động trên một trục thẳng đứng chiều dương hướng lên trên sao cho tọa độ của hạt (đơn vị: mét) tại thời điểm t (giây) là y = t3 – 12t + 3, (t ≥ 0). Quãng đường hạt đi được trong khoảng thời gian 0 < t < 3 là
</>
Câu 3:
Khi máu di chuyển từ tim qua các động mạch chính rồi đến các mao mạch và quay trở lại qua các tĩnh mạch, huyết áp tâm thu (tức là áp lực của máu lên động mạch khi tim co bóp) liên tục giảm xuống. Giả sử một người có huyết áp tâm thu P (tính bằng mmHg) được cho bởi hàm số \(P\left( t \right) = \frac{{25{t^2} + 125}}{{{t^2} + 1}}\), (0 ≤ t ≤ 10) trong đó thời gian t được tính bằng giây. Tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim là:
Câu 4:
II. Thông hiểu
Một tên lửa bay vào không trung với quãng đường đi được \(s\left( t \right) = {e^{{t^2} + 3}} + 2t.{e^{3t + 1}}\) (km). Hỏi vận tốc của tên lửa sau 1 giây là bao nhiêu?
Câu 5:
Trong một môi trường dinh dưỡng có 1000 vi khuẩn được cấy vào. Bằng thực nghiệm xác định được số lượng vi khuẩn tăng theo thời gian bởi qui luật \(N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}}\) (con vi khuẩn), trong đó t là thời gian (đơn vị giây). Hãy xác định thời điểm sau khi thực hiện cấy vi khuẩn vào, số lượng vi khuẩn tăng lên lớn nhất là bao nhiêu?
Câu 6:
Giả sử chi phí C(x) (nghìn đồng) để sản xuất x bánh mì của một cửa hàng bánh được cho bởi hàm số C(x) = 2,5x3 – 500x + 100 000. Hàm chi phí biên của cửa hàng để sản xuất 120 bánh mì là:
Câu 7:
Một người muốn xây một cái bể chứa nước, dạng một khối hộp chữ nhật không nắp có thể tích bằng \[288\,\,\,d{m^3}\]. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là \[500\,000\] đồng/\({m^2}\). Nếu người đó biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất. Hỏi người đó trả chi phí thấp nhất để thuê nhân công xây dựng bể đó là bao nhiêu?
về câu hỏi!