Câu hỏi:

13/10/2024 3,495

Khi máu di chuyển từ tim qua các động mạch chính rồi đến các mao mạch và quay trở lại qua các tĩnh mạch, huyết áp tâm thu (tức là áp lực của máu lên động mạch khi tim co bóp) liên tục giảm xuống. Giả sử một người có huyết áp tâm thu P (tính bằng mmHg) được cho bởi hàm số \(P\left( t \right) = \frac{{25{t^2} + 125}}{{{t^2} + 1}}\), (0 ≤ t ≤ 10) trong đó thời gian t được tính bằng giây. Tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Có \(P'\left( t \right) = \frac{{50t\left( {{t^2} + 1} \right) - 2t\left( {25{t^2} + 125} \right)}}{{{{\left( {{t^2} + 1} \right)}^2}}} = \frac{{ - 200t}}{{{{\left( {{t^2} + 1} \right)}^2}}}\).

\(P'\left( 5 \right) = \frac{{ - 200.5}}{{{{\left( {{5^2} + 1} \right)}^2}}} = - \frac{{250}}{{169}}\).

Tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim là giảm \(\frac{{250}}{{169}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

p (triệu đồng) là giá của mỗi ti vi, x là số ti vi.

Theo giả thiết tốc độ thay đổi của x tỉ lệ với tốc độ thay đổi của p nên hàm số p = p(x) là hàm số bậc nhất. Do đó p(x) = ax + b (a ≠ 0)

Theo đề ta có: x1 = 1000 thì p1 = 14; x2 = 1100 thì p1 = 13,5.

Vì đường thẳng p = ax + b đi qua hai điểm (1000; 14) và (1100; 13,5) nên ta có hệ phương trình

\(\left\{ \begin{array}{l}1000a + b = 14\\1100a + b = 13,5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{200}}\\b = 19\end{array} \right.\).

Vậy \(p = - \frac{1}{{200}}x + 19\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay