Câu hỏi:

25/10/2024 3,896

Tìm m để phương trình x2 + 4x + m = 0 có hai nghiệm x1, x2 thoả mãn x12 + x22 = 10.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình x2 + 4x + m = 0 có: a = 1, b = 4, c = m

∆ = b2 – 4ac = 42 – 4 . 1 . m = 16 – 4m

Phương trình có hai nghiệm khi ∆ > 0 hay 16 – 4m > 0, suy ra m < 4.

Gọi hai nghiệm của phương trình là x1 và x2. Theo định lý Viète ta có:

x1+x2=ba=41=4;

x1x2=ca=m1=m.

Ta có: (x1 + x2)2 = (–4)2

x12 + x22 + 2x1x2 = 16

10 + 2m = 16

2m = 6

m = 3 (thỏa mãn)

Vậy với m = 3 thì phương trình đã cho có hai nghiệm x1, x2 thoả mãn x12 + x22 = 10.

Bình luận


Bình luận

Linh Tạ
23:45 - 06/05/2025

Cho phương trình: x^2+4x+4m-m^2=0 (M là tham số). Tìm các giá trị của M để phương trình có 2 nghiệm x1,x2 phân biệt thoả mãn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình bậc hai (ẩn x): x2 – 4x + m – 2 = 0.

a) Tìm điều kiện của m để phương trình có nghiệm.

b) Với các giá trị m tìm được ở câu a, gọi x1 và x2 là hai nghiệm của phương trình. Hãy tính giá trị của các biểu thức sau theo m:

A = x12 + x22; B = x13 + x23.

Xem đáp án » 25/10/2024 5,743

Câu 2:

Dùng định lí Viète, tính nhẩm nghiệm của các phương trình sau:

a) x2 – 8x + 15 = 0;        

b) x2 + 5x + 6 = 0.

Xem đáp án » 25/10/2024 1,386

Câu 3:

Giả sử phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm là x1, x2 đều khác 0. Hãy lập phương trình bậc hai có hai nghiệm là 1x1 1x2.

Xem đáp án » 25/10/2024 1,353

Câu 4:

Tìm hai số u và b, biết:

a) u + v = 17, uv = 72;    

b) u2 +v2 = 73, uv = 24.

Xem đáp án » 25/10/2024 1,203

Câu 5:

Bác Long có 48 mét lưới thép. Bác muốn dùng để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật để trồng rau.

a) Biết diện tích của mảnh vườn là 108 m2, hãy tính chiều dài và chiều rộng của mảnh vườn.

b) Hỏi diện tích lớn nhất của mảnh vườn mà bác Long có thể rào được là bao nhiêu mét vuông?

Xem đáp án » 25/10/2024 820

Câu 6:

Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1, x2 thì đa thức ax2 + bx + c có thể phân tích được thành nhân tử như sau:

ax2 + bx + c = a(x – x1)(x – x2).

Áp dụng: Hãy phân tích các đa thức sau thành nhân tử:

2x2 – 9x + 7;

4x2+23x7+2.

Xem đáp án » 25/10/2024 744
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay