Câu hỏi:

19/03/2025 67

Cho hàm số y = 2x – 4xln2. Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] có dạng a – blnc. Tính a + b + c?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Tập xác định: D = ℝ.

Có y' = 2xln2 – 4ln2; y' = 0 2xln2 – 4ln2 = 0 x = 2.

Cho hàm số y = 2x – 4xln2. Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] có dạng a – blnc. Tính a + b + c? (ảnh 1)

Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] bằng 4 – 8ln2 tại x = 2.

Khi đó: a + b + c = 4 + 8 + 2 = 14 .

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số y = cos2x – 3 đạt giá trị nhỏ nhất trên đoạn [0; π] bằng:

Xem đáp án » 19/03/2025 63

Câu 2:

Tìm giá trị nhỏ nhất của hàm số f(x) = (x − 3)e2x .

Xem đáp án » 19/03/2025 54

Câu 3:

Hàm số \(y = \sqrt {1 + x} + \sqrt {1 - x} \) có giá trị lớn nhất, giá trị nhỏ nhất lần lượt là:

Xem đáp án » 19/03/2025 53

Câu 4:

Tìm giá trị lớn nhất của hàm số \[y = f(x) = \frac{x}{{{x^2} + 1}}\] trên nửa khoảng (0; +∞).

Xem đáp án » 19/03/2025 45

Câu 5:

Hàm số y = (x – 1)2 + (x + 3)2 có giá trị nhỏ nhất bằng:

Xem đáp án » 19/03/2025 32

Câu 6:

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{{x^2} - x + 1}}{{x - 1}}\) trên khoảng (1; +∞) là:

Xem đáp án » 19/03/2025 32