Câu hỏi:

19/03/2025 2,565 Lưu

Tìm giá trị lớn nhất của hàm số \[y = f(x) = \frac{x}{{{x^2} + 1}}\] trên nửa khoảng (0; +∞).

A. 2;

B. \[\frac{1}{2}\];

C. \[\frac{1}{4}\];

D. 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\(f'\left( x \right) = \frac{{ - {x^2} + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}\).

\(f'\left( x \right) = 0 \Leftrightarrow \frac{{ - {x^2} + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0 \Leftrightarrow x = 1\)

Bảng biến thiên

Tìm giá trị lớn nhất của hàm số   y = f ( x ) = x x 2 + 1   trên nửa khoảng (0; +∞). (ảnh 1)

Vậy giá trị lớn nhất là \[\frac{1}{2}\] khi x = 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\];

B. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = \frac{{{e^5}}}{2}\];

C. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = {e^5}\];

D. Không tồn tại.

Lời giải

Đáp án đúng là: A

Ta có: f'(x) = (2x – 5)e2x; f'(x) = 0 \(x = \frac{5}{2}\).

Bảng biến thiên của hàm số:

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\).

Lời giải

Đáp án đúng là: B

Tập xác định: D = ℝ.

Có y' = 2xln2 – 4ln2; y' = 0 2xln2 – 4ln2 = 0 x = 2.

Cho hàm số y = 2x – 4xln2. Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] có dạng a – blnc. Tính a + b + c? (ảnh 1)

Giá trị nhỏ nhất của hàm số trên đoạn [0; 4] bằng 4 – 8ln2 tại x = 2.

Khi đó: a + b + c = 4 + 8 + 2 = 14 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP