10 bài tập Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một khoảng, đoạn hay nửa khoảng có lời giải
76 người thi tuần này 4.6 543 lượt thi 10 câu hỏi 60 phút
🔥 Đề thi HOT:
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
Đề ôn luyện Toán Chương 8. Một số yếu tố thống kê, xác suất và lý thuyết đồ thị (đề số 3)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. −12;
B. 10;
C. 15;
D. −2.
Lời giải
Đáp án đúng là: C
Xét hàm số f(x) = x3 – 3x2 – 9x +10 trên đoạn [−2; 2] , ta có: f'(x) = 3x2 – 6x – 9.
Có f'(x) = 0 3x2 – 6x – 9 = 0 x = −1 [−2; 2] hoặc x = 3 [−2; 2]
Có f(−2) = 8; f(−1) = 15; f(2) = −12.
Suy ra \[\mathop {max}\limits_{\left[ { - 2;\,2} \right]\,} f\left( x \right) = f\left( { - 1} \right) = 15\].
Câu 2
A. x = 5;
B. x = 2;
C. x = 1;
D. x = 4.
Lời giải
Đáp án đúng là: B
Ta có \(y' = 1 - \frac{4}{{{x^2}}} \Rightarrow y' = 0 \Leftrightarrow {x^2} = 4 \Rightarrow x = 2\) (vì x (1; 5)).
Khi đó y(1) = 5; y(2) = 4 và \(y\left( 5 \right) = \frac{{29}}{5}\).
Do đó \(\mathop {\min }\limits_{\left[ {1;5} \right]} y = 4\) tại x = 2.
Câu 3
A. −3;
B. \(\frac{1}{2}\);
C. −1;
D. 1.
Lời giải
Đáp án đúng là: C
Hàm số đã cho liên tục trên [0; 3]
Ta có \(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\) với ∀x [0; 3] .
Có y (0) = −1; \(y\left( 3 \right) = \frac{1}{2}\). Do đó \(\mathop {\min }\limits_{\left[ {0;3} \right]} y = y(0) = - 1\).
Lời giải
Đáp án đúng là: A
Ta có: y' = −2sin2x; y' = 0 sin2x = 0 \( \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\).
Vì x [0; π] \(x \in \left\{ {0;\frac{\pi }{2};\pi } \right\}\).
Do đó: y(0) = −2; \(y\left( {\frac{\pi }{2}} \right) = - 4;y\left( \pi \right) = - 2\).
Vậy \(\mathop {\min }\limits_{\left[ {0;\pi } \right]} y = - 4\).
Câu 5
A. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\];
B. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = \frac{{{e^5}}}{2}\];
C. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = {e^5}\];
D. Không tồn tại.
Lời giải
Đáp án đúng là: A
Ta có: f'(x) = (2x – 5)e2x; f'(x) = 0 \(x = \frac{5}{2}\).
Bảng biến thiên của hàm số:

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\).
Câu 6
A. 2;
B. \[\frac{1}{2}\];
C. \[\frac{1}{4}\];
D. 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. −2;
B. 14;
C. 34;
D. 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \(\sqrt 2 ;1\);
B. 1; 0;
C. \(2;\sqrt 2 ;\)
D. 2; 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. −1;
B. 3;
C. 5;
D. \( - \frac{7}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.